
NURD : Negative-Unlabeled Learning for Online
Datacenter Straggler Prediction

Yi Ding*, Avinash Rao†, Hyebin Song‡, Rebecca Willett†, Henry Hoffmann†

*MIT CSAIL, † University of Chicago, ‡ Penn State University

9/2/22 MLSys 2022 1

Stragglers in Datacenter Computation

Task parallelism:
- A job is split into parallel tasks.
- Job completion time depends on the slowest task.

Stragglers:
- Rare, but extremely slow tasks within a job, e.g. > P95.
- Causes such as data skew, resource constraints, etc.

Straggler impact:
- Delay job completion time by 50% in 20% of Google jobs.

9/2/22 MLSys 2022 2

Ta
sk

s

Execution Time

⎯ Normal
⎯ Straggler

Threshold

A job split into tasks

Straggler Mitigation

Speculative execution:
- Monitor job execution and launch

duplicates of tasks that are slower.
- Need to predict stragglers early

and accurately.

9/2/22 MLSys 2022 3

Node A
Task (slow)

Node B
Task (clone)

Scheduler

Task
progress

Launch
speculative

Straggler Prediction Problem

Predict task latency based on task and node features such as resource usage, scheduling
behavior, machine capacity, 𝜇arch features.

Prior Work:
- Heuristic based: LATE (OSDI’08), Mantri (OSDI’10)

- Using task progress metrics to estimate remaining time or slowdown analytically.
- Not accurate enough or hard to generalize.

- Machine learning based: Wrangler (SOCC’14)
- Using machine learning to predict latency.

9/2/22 MLSys 2022 4

Wrangler (SOCC’14)

Waiting for data collection to have both stragglers and nonstragglers in training.
- It can take a long time to wait for stragglers to appear.
- Can we make accurate predictions without observing labeled stragglers in training?

Offline training on jobs from past execution.
- Characteristics of each job are unique. No guarantee that past executions can generalize.
- Can we do online training and prediction?

9/2/22 MLSys 2022 5

This Work

NURD: Negative-Unlabeled Learning with Reweighting and Distribution-compensation
- Positive: stragglers, true latency unrevealed
- Negative: nonstragglers, finished tasks, true latency revealed
- Unlabeled: running tasks, true latency unrevealed, including both nonstragglers and stragglers

Goal: constructs a unique predictive model for each job online while it executes.

9/2/22 MLSys 2022 6

Task starts Task running True latency

T0àt = Known time

Am I going to be a straggler?
NURD: Keep running and I will tell you.

Am I a straggler?
NURD: Yes!

Intervene (e.g., early terminate and relaunch)

Illustration

9/2/22 MLSys 2022 7

Timepoint Finished tasks Test (running)
tasks

t0 1,8,10,14 0,2,3,4,5,6,7,
9,11,12,13,15

t1 1,3,5,8,9,10,11,1
2,14

0,2,4,6,7,13,1
5

t2 0,1,3,4,5,7,8,9,10
,11,12,14

2,6,13,15

t3 0,1,2,3,4,5,7,8,9,
10,11,12,14,15

6,13

Ta
sk

s

Execution time

⎯ Normal
⎯ Stragglers

Threshold

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

t0 t1 t2 t3

A running job split into tasks

0
When any task is predicted to straggle
at any timepoint, it will be terminated
and relaunched immediately.

Contributions

NURD benefits:
- No reliance on previous jobs --- train and predict online on the current running job.
- No reliance on complete labels --- only have nonstragglers and running tasks in training.

Evaluation on Google and Alibaba production traces. Compared to Wrangler, NURD has
- 35 and 21 percentage point increases in F1.
- Up to 9.3 and 8.9 percentage point improvements in job completion time.

9/2/22 MLSys 2022 8

NURD Framework

Key idea: train a latency predictor using finished tasks (i.e., non-stragglers), and reweight
latency predictions based on a function of dissimilarity between finished and running tasks.

9/2/22 MLSys 2022 9

A single timepoint
A job’s lifetime

Reweighting
predicted latency

Updating models
online

Training with
finished tasks

Train Reweight Update

t0

Train Reweight Update

t1

Train Reweight Update

ti

Step 1: Training with Finished Tasks

At 𝑡-th timepoint, train a regression model ℎ𝑡 on finished tasks.

At 𝑡-th timepoint for the 𝑖-th running task, the predicted latency will be

%𝑦𝑡𝑖 = ℎ𝑡(𝑥𝑡𝑖)

But, these predictions will be biased towards finished tasks (i.e., non-stragglers).

9/2/22 MLSys 2022 10

Step 2: Reweighting

Predictions %𝑦𝑡𝑖 trained on finished tasks will be biased towards nonstragglers.
To reduce bias, NURD reweights %𝑦𝑡𝑖 using a weighting function wti ∈ [0, 1) such that

%𝑦!"
#$% =

%𝑦𝑡𝑖
wti

Intuitively, we want

- When 𝑖-th task’s features are similar to finished tasks’, wti → 1, %𝑦!"
#$% ≈ %𝑦𝑡𝑖 .

- When 𝑖-th task’s features are different finished tasks’, wti → 0, %𝑦!"
#$% ≫ %𝑦𝑡𝑖 .

Propensity score matches our intuition
- Definition: conditional probability that a task belongs to the class of finished tasks given its

features at 𝑡-th timepoint. More details in the paper.

9/2/22 MLSys 2022 11

Step 3: Updating Models Online

As the job is running, NURD accumulates finished tasks.

NURD uses new finished tasks to update both latency predictor and weighting function.

NURD improves prediction results as it collects more finished tasks.

9/2/22 MLSys 2022 12

Conclusion

9/2/22 MLSys 2022 13

Yi Ding, Avinash Rao, Hyebin Song, Rebecca Willet, Henry Hoffmann. NURD: Negative-Unlabeled Learning for Online Datacenter Straggler Prediction.
Conference on Machine Learning and Systems (MLSys), 2022.

Reweighting
predicted latency

Updating models
online

Training on
finished tasks

NURD: No reliance on past jobs or labeled stragglers in training

