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Computer Systems Optimization

« Optimizing modern computer systems requires tradeoffs:
Deliver reliable performance
Minimize energy consumption

« Resource management via system configuration:
Resources have complex, non-linear effects on performance and energy
Resource interactions create local optima

« How to find the optimal system configuration?



Example of a Configuration Space C

C + {Core assignment} x{Clock speed assignment} x {Memory controller}
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Machine Learning to the Rescue

* However ...
Scarce data: expensive collection, limited range behavior —>Generative model

Asymmetric benefits: only configs on optimal frontier useful  >Multi-phase sampling
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Machine Learning to the Rescue

* However ...
Scarce data: expensive collection, limited range behavior —>Generative model

Asymmetric benefits: only configs on optimal frontier useful  >Multi-phase sampling

We advocate:

» De-emphasizing prediction accuracy
* Incorporating system structure into learner
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Problem Formulation

Meet latency constraints with minimal energy via system configs

Require the power and performance profile for applications

§ =

Learn to estimate these values

Config: an
allocation of
hardware
resources to
an application
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SRAD on ARM big.LITTLE system
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Optimal points Just far enough True data
Non-optimal points True data Very far
Goodness of fit 99% 0

Energy over optimal 22% X 0
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SRAD on ARM big.LITTLE system

® True Tradeoffs —e—True Optimal -G Model A X Model B

Key Insight:
High accuracy + good system results

Non-optimal points True data Just far enough
Goodness of fit 99% 0
Energy over optimal 22% X 0
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Recommender Systems -> Learning by Examples

ralngs Searches

Watch History

Re-watch Program @

Credit Calculation

NETFLIX
BIG DATA

https://www.muvi.com/blogs/deciphering-the-unstoppable-netflix-and-the-role-of-big-data.html
https://datajobs.com/data-science-repo/Recommender-Systems-[Netflix].pdf

1. Paragon: QoS-Aware Scheduling for Heterogeneous Datacenters. Christina Delimitrou and Christos Kozyrakis. (ASPLOS 2013)
2. Quasar: Resource-Efficient and QoS-Aware Cluster Management. Christina Delimitrou and Christos Kozyrakis (ASPLOS 2014)
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Yehuda Koren, Yahoo Research

As the Netflix Prize competition has dem-
onstrated, matrix factorization models
are superior to classic nearest-neighbor
techniques for producing product recom-
mendations, allowing the incorporation
of additional information such as implicit
feedback, temporal effects, and confidence
levels.

odern consumers are inundated with
choices. Electronic retailers and content
providers offer a huge selection of prod-
ucts, with unprecedented opportunities
to meet a variety of special needs and
tastes. Matching consumers with the most appropriate
products is key to enhancing user satisfaction and loy-
alty. Therefore, more retailers have become interested in
recommender systems, which analyze patterns of user
interest in products to provide personalized recommenda-
tions that suit a user’s taste. Because good personalized
recommendations can add another dimension to the user
experience, e-commerce leaders like Amazon.com and
Netflix have made recommender systems a salient part
of their websites.

COMPUTER

Published by the IEEE Computer Society

Such systems are particularly useful for entertainment
products such as movies, music, and TV shows. Many cus-
tomers will view the same movie, and each customer is
likely to view numerous different movies. Customers have
proven willing to indicate their level of satisfaction with
particular movies, so a huge volume of data is available
about which movies appeal to which customers. Com-
panies can analyze this data to recommend movies to
particular customers.

RECOMMENDER SYSTEM STRATEGIES

Broadly speaking, recommender systems are based
on one of two strategies. The content filtering approach
creates a profile for each user or product to characterize
its nature. For example, a movie profile could include at-
tributes regarding its genre, the participating actors, its
box office popularity, and so forth. User profiles might
include demographic information or answers provided
on a suitable questionnaire. The profiles allow programs
to associate users with matching products. Of course,
content-based strategies require gathering external infor-
mation that might not be available or easy to collect.

A known successful realization of content filtering is
the Music Genome Project, which is used for the Internet
radio service Pandora.com. A trained music analyst scores

0018-9162/09/$26.00 © 2009 IEEE
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An Analogy

Known Applications
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Outline

 Methods



Generating Data for Accuracy

 Goal: different enough but still realistic to be plausible



Generating Data for Accuracy

» Goal: different enough but still realistic to be plausible

* How:
Random number generator  —>different but not plausible
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Generating Data for Accuracy

 Goal: different enough but still realistic to be plausible

* How:
Random number generator  —>different but not plausible
Gaussian Mixture Model (GMM) > plausible but not different

= Component 1 K: number of components
x;: data points, i=1,...,N

== Component 2 w,: weight of k-th component

m— Component 3
Probability that x; belongs to k-th

comp:

Density

K
p(xi) = ) wig(xilpg, )
k=1

(xi — px) 27 (xi — llk))

DN | =

1
9Xilpk, 2) = 53 eXP(—
(2m) 2 |2]2

Data
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Computer System Configurations

Generating Data with a GMM

Divide Known Data
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Generating Data with a GMM

Divide Known Data Learn GMMs

Computer System Configurations
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Generating Data with a GMM

Divide Known Data Learn GMMs Swap Max and Min
Behavior Behavior

™

Behavior Behavior




Computer System Configurations

Generating Data with a GMM

Divide Known Data

- |
Behavior Behavior

Learn GMMs Swap Max and Min Generate new data
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Computer System Configurations

Generating Data with a GMM

Divide Known Data

Learn GMMs Swap Max and Min  Generate new data

» | -»m i | R

Behavior Behavior
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Behavior Behavior

Density

Concatenate
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Computer System Configurations

Multi-phase Sampling

Input: Configuration-Application data matrix, Sampling budget N

Matrix Completion
with Sample Size N/2

Known Applications

Application
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Multi-phase Sampling

Input: Configuration-Application data matrix, Sampling budget N

Matrix Completion Estimated
with Sample Size N/2 Behavior for New
Known Applications Application

Application

Computer System Configurations
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Multi-phase Sampling

Input: Configuration-Application data matrix, Sampling budget N

Matrix Completion Estimated Select N/2
with Sample Size N/2 Behavior for New Best Configs
Application

Known Applications

» » Fici estimated performance
efficiency =
y estimated power

Application

Computer System Configurations
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Multi-phase Sampling

Input: Configuration-Application data matrix, Sampling budget N

Matrix Completion Estimated Select N/2 Matrix Completion with N/2 original
with Sample Size N/2 Behavior for New Best Configs samples and N/2 estimated best configs

Application

Computer System Configurations
Computer System Configurations




Outline

 Experimental Results



Experimental Setup

_ Mobile ______JSerer

System Ubuntu 14.04 Linux 3.2.0 system
Architecture ARM big.LITTLE Intel Xeon E5-2690
# Applications 21 22

# Configurations 128 1024

30



Learning Models and Frameworks

Learning Models

MCGD MC First comprehensive study of matrix
MCMF MC completion (MC) algorithms for
Nuclear MC systems optimization task
WNNM MC

HBM Bayesian
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Learning Models and Frameworks

Learning Models

MCGD MC First comprehensive study of matrix
MCMF MC completion (MC) algorithms for
Nuclear MC systems optimization task
WNNM MC

HBM Bayesian

Vanilla Basic learners
GM Generative model
MP Multi-phase sampling

MP-GM Combine GM and MP
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Energy Above

Optimal (%)

Improve Energy Savings w/ MP
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Average energy improvement

GM MP MP - GM
Mobile —-14% 41% 22%
Server —22% 11% —-6.5%

Lower

Better
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Conclusion

® True Tradeoffs —e—True Optimal -O Model A X Model B
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Conclusion

® True Tradeoffs —e—True Optimal -O Model A X Model B
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We advocate:

« De-emphasizing prediction accuracy
* Incorporating system structure into learner

Yi Ding, Nikita Mishra, and Henry Hoffmann. 2019. Generative and Multiphase Learning for Computer

Systems Optimization. In The 46th Annual International Symposium on Computer Architecture (ISCA '19)
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