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• Optimizing modern computer systems requires tradeoffs:
Deliver reliable performance
Minimize energy consumption

• Resource management via system configuration:
Resources have complex, non-linear effects on performance and energy
Resource interactions create local optima

• How to find the optimal system configuration?
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Machine Learning to the Rescue
•However …

Scarce data: expensive collection, limited range behavior 
Asymmetric benefits: only configs on optimal frontier useful
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àGenerative model
àMulti-phase sampling

We advocate:
• De-emphasizing prediction accuracy
• Incorporating system structure into learner



Problem Formulation
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Meet latency constraints with minimal energy via system configs

Require the power and performance profile for applications

Learn to estimate these values

Expensive

Config: an 
allocation of 

hardware 
resources to 

an application
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Model A Model B 
Optimal points Just far enough True data
Non-optimal points True data Very far
Goodness of fit 99% 0
Energy over optimal 22%   ❌ 0   ✅



SRAD on ARM big.LITTLE system
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Model A Model B 
Optimal points Just far enough True data
Non-optimal points True data Just far enough
Goodness of fit 99% 0
Energy over optimal 22%   ❌ 0   ✅

Key Insight:
High accuracy ≠ good system results



Recommender Systems -> Learning by Examples
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https://www.muvi.com/blogs/deciphering-the-unstoppable-netflix-and-the-role-of-big-data.html
https://datajobs.com/data-science-repo/Recommender-Systems-[Netflix].pdf

1. Paragon:	QoS-Aware	Scheduling	for	Heterogeneous	Datacenters.	Christina	Delimitrou and	Christos	Kozyrakis.	(ASPLOS 2013)
2. Quasar:	Resource-Efficient	and	QoS-Aware	Cluster	Management.	Christina	Delimitrou and	Christos	Kozyrakis (ASPLOS 2014)
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Outline
• Motivation
• Methods
• Experimental Results
• Conclusion
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Generating Data for Accuracy
• Goal: different enough but still realistic to be plausible
• How:

Random number generator
Gaussian Mixture Model (GMM)

Data

D
en

sit
y

Component 1

Component 2

Component 3

K: number of components
xi : data points, i=1,…,N
wk: weight of k-th component

Probability that xi belongs to k-th
comp:
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àdifferent but not plausible
àplausible but not different



Generating Data with a GMM
Co

m
pu

te
r S

ys
te

m
 C

on
fig

ur
at

io
ns

Known 
Applications

Divide Known Data

20



Generating Data with a GMM
Co

m
pu

te
r S

ys
te

m
 C

on
fig

ur
at

io
ns

Known 
Applications

Divide Known Data Learn GMMs

Behavior

De
ns

ity

Behavior

De
ns

ity

21



Generating Data with a GMM
Co

m
pu

te
r S

ys
te

m
 C

on
fig

ur
at

io
ns

Known 
Applications

Divide Known Data Learn GMMs

Behavior

De
ns

ity

Behavior

De
ns

ity

Behavior

De
ns

ity
Behavior

De
ns

ity

Swap Max and Min

22



Generating Data with a GMM
Co

m
pu

te
r S

ys
te

m
 C

on
fig

ur
at

io
ns

Known 
Applications

Divide Known Data Learn GMMs

Behavior

De
ns

ity

Behavior

De
ns

ity

Swap Max and Min

Behavior

De
ns

ity
Behavior

De
ns

ity

Generate new data

23



Generating Data with a GMM
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Multi-phase Sampling
Co

m
pu

te
r S

ys
te

m
 C

on
fig

ur
at

io
ns

Known Applications

N
ew

 A
pp

lic
at

io
n

Matrix Completion 
with Sample Size N/2

25

Input: Configuration-Application data matrix, Sampling budget N
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Input: Configuration-Application data matrix, Sampling budget N



Outline
• Motivation
• Methods
• Experimental Results
• Conclusion
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Experimental Setup
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Mobile Server
System Ubuntu 14.04 Linux 3.2.0 system 
Architecture ARM big.LITTLE Intel Xeon E5-2690 
# Applications 21 22
# Configurations 128 1024



Learning Models and Frameworks
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Learning Models Category
MCGD MC
MCMF MC
Nuclear MC
WNNM MC
HBM Bayesian

First comprehensive study of matrix 
completion (MC) algorithms for 

systems optimization task
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Learning Models Category
MCGD MC
MCMF MC
Nuclear MC
WNNM MC
HBM Bayesian

Frameworks Definitions
Vanilla Basic learners
GM Generative model
MP Multi-phase sampling
MP-GM Combine GM and MP

First comprehensive study of matrix 
completion (MC) algorithms for 

systems optimization task



Improve Prediction Accuracy w/ GM

Mobile Server

Average percentage points of accuracy improvement
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High 
is 

Better



Improve Energy Savings w/ MP

Mobile Server

Average energy improvement
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Lower 
is 

Better
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Yi Ding, Nikita Mishra, and Henry Hoffmann. 2019. Generative and Multiphase Learning for Computer 
Systems Optimization. In The 46th Annual International Symposium on Computer Architecture (ISCA ’19)

We advocate:
• De-emphasizing prediction accuracy
• Incorporating system structure into learner
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