
Generative and Multi-phase Learning for Computer Systems
Optimization

Yi Ding
University of Chicago
dingy@uchicago.edu

Nikita Mishra
University of Chicago

nmishra@cs.uchicago.edu

Henry Hofmann
University of Chicago

hankhofmann@cs.uchicago.edu

ABSTRACT

Machine learning and artiicial intelligence are invaluable for com-

puter systems optimization: as computer systems expose more

resources for management, ML/AI is necessary for modeling these

resources’ complex interactions. The standard way to incorporate

ML/AI into a computer system is to irst train a learner to accurately

predict the system’s behavior as a function of resource usageÐe.g.,
to predict energy eiciency as a function of core usageÐand then

deploy the learned model as part of a systemÐe.g., a scheduler. In
this paper, we show that (1) continued improvement of learning

accuracy may not improve the systems result, but (2) incorporating

knowledge of the systems problem into the learning process im-

proves the systems results even though it may not improve overall

accuracy. Speciically, we learn application performance and power

as a function of resource usage with the systems goal of meeting la-

tency constraints with minimal energy. We propose a novel genera-
tive model which improves learning accuracy given scarce data, and

we propose a multi-phase sampling technique, which incorporates

knowledge of the systems problem. Our results are both positive

and negative. The generative model improves accuracy, even for

state-of-the-art learning systems, but negatively impacts energy.

Multi-phase sampling reduces energy consumption compared to

the state-of-the-art, but does not improve accuracy. These results

imply that learning for systems optimization may have reached a

point of diminishing returns where accuracy improvements have

little efect on the systems outcome. Thus we advocate that future

work on learning for systems should de-emphasize accuracy and

instead incorporate the system problem’s structure into the learner.

CCS CONCEPTS

· Computing methodologies → Machine learning; · Com-

puter systems organization → Heterogeneous (hybrid) sys-

tems; Embedded systems; Real-time system architecture; ·

Hardware → Chip-level power issues.

KEYWORDS

Machine learning; real-time systems; energy; heterogeneous archi-

tectures; resource allocation

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for proit or commercial advantage and that copies bear this notice and the full citation
on the irst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speciic permission and/or a
fee. Request permissions from permissions@acm.org.

ISCA ’19, June 22ś26, 2019, Phoenix, AZ, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6669-4/19/06. . . $15.00
https://doi.org/10.1145/3307650.3326633

ACM Reference Format:

Yi Ding, Nikita Mishra, and Henry Hofmann. 2019. Generative and Multi-

phase Learning for Computer Systems Optimization. In The 46th Annual
International Symposium on Computer Architecture (ISCA ’19), June 22ś26,
2019, Phoenix, AZ, USA. ACM, New York, NY, USA, 14 pages. https://doi.

org/10.1145/3307650.3326633

1 INTRODUCTION

Computer systems optimization is increasingly multidimensional:

systems must deliver reliable performance (e.g., quality-of-service
or latency guarantees) while minimizing energy consumption. To

meet these conlicting goals, computer architects expose resources

for software management. System software is then responsible for

coniguring these resources to operate at an optimal point in the

performance-energy tradeof space.

Systems expose a wide variety of resourcesÐincluding, but not

limited to heterogeneous core types, multiple sockets, conigurable

memory hierarchies, adjustable clockspeedsÐand these resources

have complex, non-linear efects on performance and energy. For

example, on little cores clockspeed might uniformly increase perfor-

mance, while on big cores high clockspeeds might induce thermal

throttling, causing performance to decline. These types of resource

interactions create local optima and make it diicult (or impossible)

for gradient-based optimization and other heuristics to ind a true

optimal resource allocation. Indeed, several studies show that the

increasing variety and complexity of conigurable resources has

rendered venerable heuristics inefective [9, 24, 32, 37, 45, 47].

In recent years, machine learning techniques have shown the

potential to increase system robustness by replacing resource man-

agement heuristics. Machine learning can model resources’ com-

plicated, non-linear interactions to avoid local optima and deliver

a true optimal solution. Indeed, as systems complexity has grown

researchers have proposed a variety of machine learning methods

for system resource management [6, 12, 17, 18, 21, 25, 31, 33, 45, 47,

49, 50, 52, 67]. While this prior work shows that machine learning

is efective for modeling complicated tradeofs, there are several

challenges that must be addressed to continue improving learning

for computer system resource management, including:

• Scarce Data: To increase learning accuracyÐi.e., the learned
model’s ability to predict ground truth for some unseen ap-

plication and system conigurationÐa robust set of training

data is required. Collecting this training data is expensive: it

requires observing a benchmark set in many diferent con-

igurations, during which the machine to be modeled is not

doing useful work. Additionally, the training benchmarks

must exhibit a wide range of behavior, so that they can make

accurate predictions for previously unseen applications.

https://doi.org/10.1145/3307650.3326633
https://doi.org/10.1145/3307650.3326633
https://doi.org/10.1145/3307650.3326633

ISCA ’19, June 22ś26, 2019, Phoenix, AZ, USA Yi Ding, Nikita Mishra, and Henry Hofmann

• Asymmetric Beneits: Most learning problems require equal

accuracy for all inputs. Furthermore, achieving better results

for one input class represents a biased learner, a condition

to be avoided, in general. In learning for systems, however,

not all resource conigurations are useful, in the sense of rep-

resenting optimal tradeofs (e.g., between performance and

power).1 Ideally, a computer system would only use conigu-

rations on the optimal frontier and ignore all non-optimal

conigurations; i.e., unlike general learning problems, bias-

ing the learner towards conigurations representing optimal

tradeofs is beneicial. The challenge is that we do not know

which conigurations are optimal to begin.

We address these two challenges by presenting two techniques

that improve a variety of learning methods for computer system

management. First, we propose a novel generative model that ad-
dresses the scarce data challenge by generating training data that

improves learning accuracy. The key insight for the generative

model is determining how to generate data that is suiciently dif-

ferent from the training set, but still realistic enough to predict

unseen behavior. Second, we propose multi-phase sampling to ad-

dress asymmetric beneits by splitting sampling into two phases:

irst, separating the optimal conigurations from the rest and second,

improving the prediction accuracy of the optimal points.

We test these techniques by implementing them for both an ARM

big.LITTLE mobile and an Intel x86 server. We use ive diferent

published learning systems to both predict performance and power

consumption for unseen benchmark applications and to schedule

resources to meet application latency requirements with minimal

energy. We compare the results of these published learners to the

same learners augmented with our proposed generative model and

multi-phase sampling. Our results show the following:

• The generative model improves predictions for all learners

on both the mobile and server systems. The average increase

in prediction accuracy is 8 percentage points.

• Multi-phase sampling improves energy savings on both the

mobile and server systems. On averageÐacross all learners

and systemsÐthis technique produces energy that is 26%

closer to optimal than the published learners for system

resource allocation and energy management [17, 18, 47].

Additionally, our data support the following observations:

• While increasing learning accuracy generally reduces energy,

there is a point of diminishing returns.
• Thus, even though the generative model improves even the

best prior learner’s accuracy, the continued accuracy improve-
ment does not reduce energy.
• Because multi-phase sampling biases the learner towards

optimal conigurations it reduces overall accuracy, yet signii-
cantly improving energy savings.

This study is strong evidence that after achieving a certain level

of accuracy, it is no longer proitable for systems researchers to im-

prove learning systems without accounting for the structureÐi.e., the
geometry of optimal tradeofs for the systems problem to be solved. In
our example of meeting latency requirements with minimal energy,

1The set of optimal tradeofs could either be Pareto-optimal, or more strictly, the set
of inputs on the lower (or upper) convex hull of the tradeof space, depending on the
speciic problem formulation. We simply use the term optimal tradeofs as the ideas in
this paper are common to both cases.

the learners only need to produce accurate results for the conigu-

rations on the frontier of optimal performance and power tradeofs.

Once we have separated the optimal conigurations, further ac-

curacy improvements provide no additional energy savings and

simply waste resources learning for no advantage. This problem is

exacerbated because for any one given application most points are

not on the optimal frontier. Thus, optimizing for learning accuracy

improves predictions for points that are not practically useful. In

summary, this work makes the following contributions:

• Proposing a novel generative model for improving predic-

tions of performance and power given scarce data.

• Demonstrating how the structure of constrained optimiza-

tion problems in computing systems creates asymmetric

beneits: accurately predicting optimal conigurations is es-

sential while accuracy for other points is of little value.

• Proposing multi-phase sampling for biasing learners towards

the useful points.

• Demonstrating the generality of the proposed techniques

by using them to further improve existing predictive mod-

eling approaches for allocating resources to meet latency

requirements with minimal energy on two diferent hard-

ware platforms.

2 RELATED WORK AND MOTIVATION

Several studies provide evidence that heuristic-based resource man-

agement can break down as the underlying computing systems

become more complicated [9, 32, 37, 45, 47, 65]. For example, a

popular heuristic is race-to-idle, which meets latency constraints

by completing computations as fast as possible and then transition-

ing to a low-power idle state (or sleep state) until the next piece

of work is available. Race-to-idle is especially efective on hard-

ware that lacks energy-proportionality; i.e., the hardware is most

energy-eicient when it runs as fast as possible and slowing down

reduces power, but actually increases energy [3, 23, 30]. Recent

work demonstrates that newer processor designsÐespecially het-

erogeneous processors with a mix of both high-performance and

low-power coresÐhave poor energy behavior under this heuristic

[9, 37]. This work demonstrates that if it were possible to accurately

model the performance and power tradeofs of all possible resource

assignments, a true optimal resource assignment can reduce energy

consumption by large integer factors compared to heuristic meth-

ods which often get stuck in local optima. In other words, resource

allocation heuristics are brittle and not portable across diferent

hardware devices, as demonstrated in both academic studies [32]

and in commercial examples [24].

The increasing complexity of computing systems creates a need

for principled approaches to replace heuristics and motivates the

study of machine learning and artiicial intelligence within re-

source management systemsÐespecially those concerned with per-

formance and energy. Due to its merits in modeling complicated

tradeofs and avoiding locally optimal resource conigurations, ma-

chine learning is an attractive alternative to heuristic solutions. We

begin this section by inding commonalities in recent work apply-

ing ML/AI to computing systems optimization problems. We then

show an example of a system/application pair which is diicult

Generative and Multi-phase Learning for Computer Systems Optimization ISCA ’19, June 22ś26, 2019, Phoenix, AZ, USA

to model and demonstrate how important it is for the learner to

capture the structure of the systems problem.

2.1 ML/AI-based Systems Management

This section details many recent examples of learning approaches

for system management. The common thread for all examples is

that the learning system is just a part of the overall solution: the

learning components produce models which are used to augment

solutions to typical systems problems; e.g., resource allocation [14,

15, 17, 39, 42, 44, 45, 47, 49, 51ś53, 61, 63, 64, 67], coniguration

[1, 11, 19, 21, 25, 40, 41, 43, 50, 55ś57, 60, 62, 66], scheduling [17,

18, 31, 54, 58, 59]. Several of these approaches are for oline system
designÐe.g., determining the optimal number and type of cores in a

heterogeneous processor [55, 56]Ðbut this paper focuses primarily

on building models appropriate for dynamic resource allocation in

a ixed processor design.

A common approach to integrating learning into systems man-

agement is to use low-level features (e.g., caches misses, instruction

per clock) to predict high-level behavior (e.g., throughput, power,
latency) [6, 12, 13, 21, 33, 40, 41, 46, 50, 52, 67]. For example, Koala

uses regression to transform such features of mobile phones into

predictions of application performance and power, which are used

to allocate resources to meet performance, energy, or power goals

[52]. Similarly, Dubach et al. use low-level features to train a model

of a conigurable super-scalar that is then used to minimize energy

by adapting to application phases [21]. Finally, the Flicker architec-

ture has conigurable lanes and uses learned models to conigure

those lanes in a way that dynamically maximizes performance for

a given power budget [50].

An alternative approach learns models of high-level behavior

from observing similar applications [17, 18, 45, 47], hardware con-

igurations [58, 63], or both [19, 49]. For example, Paragon [17]

and its follow-up, Quasar [18], use the Netlix algorithm [4] to

determine eicient schedules for a new application from models

of similar applications [17]. The Performance Impact Estimation

(PIE) system uses an application’s performance on one core type

to predict the same application’s behavior on a diferent microar-

chitecture [58]. Finally, Carat models combinations of applications

and mobile devices to determine energy savings opportunities for

other combinations [49].

Whether using low- or high-level metrics, data scarcity can be

a challenge to deploying learning methods in computer systems.

Generative methods represent a class of learning techniques that

produce new data to improve learning during the training phase [26,

35]. Some generative techniques have been proposed for learning

in systems; e.g., generating code to produce better learning systems

for optimized compilation [16]. The generative technique proposed

in this paper is a novel modiication of Gaussian Mixture Models,

which is designed speciically for amplifying rare behavior within

our training sample.

In all examples, the learning approach is just part of the overall

solution. The methodologies in these approaches can be divided

into two stages: (1) learn a model optimizing for accuracy, then (2)

use that model to solve a systems problem. While all approaches are

primarily concerned with solving a systems problem, the general

Figure 1: Learning performance/power tradeofs for SRAD on an

ARM big.LITTLE system. The dots show the true tradeofs. The

solid line shows the true optimal frontier. Model A is a learner that

is accurate except for the optimal frontier. Model B captures the op-

timal frontier and gets all other tradeofs wrong.

approach appears to be training a learning model to maximize accu-

racy, then using the learned model to solve a systems problem. The

primary contribution of this paper is to show that (1) techniques

that improve accuracy (even by quite a lot) do not necessarily pro-

duce better solutions to constrained optimization problems arising

in computing systems and (2) making the learner aware of the

system optimization problem’s structure produces better results,

even if it does not produce the best accuracy. Thus, we advocate

not training a model for maximum accuracy, but using feedback to
improve the ultimate metric of interestÐpossibly producing less ac-
curate predictions, but better overall systems solutions.

2.2 Motivational Example

We demonstrate how high learning accuracy does not guarantee a

good systems outcome. We run a real application on a real system

and construct two hypothetical learned models. We then use those

models in an open-source scheduler ([32]) to meet latency con-

straints with minimal energy. Both models predict the application’s

true power and performance tradeofs as a function of the system

coniguration. In this example and the rest of the paper, a conigura-
tion is an allocation of speciic hardware resources to an application.
The speciic resources and allowable settings will vary for diferent

hardware platforms, but they can include things like how many

physical cores are available, the clockspeed of those cores, whether

hyperthreading is enabled or not, etc. Model A perfectly predicts

every point except those on the frontier of optimal tradeofs. Those

true optimal tradeofs are predicted to be just far enough away from

their true values to be viewed as non-optimal. The second model

perfectly predicts the frontier of optimal tradeofs, but predicts all

other points as having minimal performance and maximum power.

The irst model gets near perfect accuracy, but high energy; the

second model has poor accuracy and optimal energy.

Speciically, we consider the SRAD application (from Rodinia

[10]) running on an ARM big.LITTLE system with four LITTLE

cores (with 13 clockspeeds) and four big cores (with 19 clockspeeds).

ISCA ’19, June 22ś26, 2019, Phoenix, AZ, USA Yi Ding, Nikita Mishra, and Henry Hofmann

This application is interesting for several reasons. First, it performs

well with four cores, but does not scale down. Thus, it is hard to

predict performance on four cores from two core samples. Second,

SRAD gets high energy eiciency using four LITTLE cores at max-

imum speed, but when using four big cores at maximum speed

thermal throttling drops performance dramatically. Thus, the rela-

tionship between clockspeed and performance on LITTLE cores is

not a good predictor of that relationship on big cores.

Figure 1 shows the normalized performance (x-axis) and power

(y-axis) tradeofs. Each point is a coniguration (combination of

core allocation and clockspeed) and its position represents its per-

formance and power tradeofs. The dots show all possible conig-

urations, while the solid line shows the frontier of true optimal

tradeofs (found through exhaustive search). This igure illustrates

a key intuition behind the insights presented in this paper: for any
one application most points do not represent optimal tradeofs. In this
example, only 10 of 128 conigurations are on the optimal frontier.

We now construct our irst example learner: Model A, which

uses the true, measured data for the non-optimal points and then

deliberately moves the optimal points just far enough that they will

not be selected by the scheduler. We measure Model A’s accuracy

using goodness-of-it (see Section 6.5) and ind it is 99% accurate.

We measure energy by feeding this model to a scheduler (from [32])

and having it select combinations of conigurations to meet latency

requirements and minimize energy. We vary latency requirements

across the range of possible behaviors and ensure they are met at

least 99% of the time. We then measure the energy and compare

to optimalÐi.e., that obtained with a perfect model. We ind that

Model A uses 22% more energy than optimal.

Model B uses the true data for the optimal conigurations, all oth-

ers are assigned minimal performance and maximum power. Model

B’s goodness-of-it is essentially 0Ðnot surprising, as most points

are inaccurately predicted. All the optimal points are predicted with

no error, however, so the energy is the same as optimal.

This example illustrates the most important intuition behind the

remainder of the paper. First, high accuracy does not necessarily

imply a good systems result. Second, low accuracy does not neces-

sarily mean a bad systems result. These observations demonstrate

the problem of asymmetric beneits: the system disproportionately

beneits from improving accuracy of the small set of conigurations

on the optimal frontier.

3 LEARNING BY EXAMPLE

This paper builds of prior systems work that learns by example
[17, 18, 47, 49, 58]. The Paragon project applies this idea to resource

management in cloud computing [17]. Paragon takes inspiration

from recommender systems, speciically the solution to the Netlix

challenge [4]. The Netlix approach learns movie recommendations

by inding people with similar taste and using those similarities to

predict how people would respond to new moviesÐi.e., it recom-

mends movies based on scores for common movies. More formally,

the problem is structured as a matrix (shown in Figure 2a) where

each row represents a movie, each column is a person and the entry

at a particular row and column is the person’s numerical rating for

that movie. Many entries are missing, and the learner’s job is to es-

timate them. The intuition is that if two people have similar ratings

(a) Movie Recommendations (b) Computer Systems

Figure 2: Matrix Formulation of Learning by Example. Shaded re-

gions represent known data, while blank entries represent missing

data. In the movie recommendations system, the rows are movies

and the columns are users. Each entry represents a user’s score

for a given movie; many entries will be empty and the learner’s

goal is to use known scores to ill in the missing entries. In the

computer systems example, the rows are resource conigurations

and the columns are applications. Each entry represents an appli-

cation’s performance (or power) for a given resource assignment.

In this case, most entries are known from running common bench-

marks. When a new application arrives, the learner’s goal is to sam-

ple the new application in a small number of conigurations and ill

in themissing entries. In thatway, the learner uses the known appli-

cations’ responses to resources to predict the new application’s re-

sponse to the same resources. In this problem formulation, learning

techniques that work well for recommender systems can be easily

adapted to computer system resource management.

for some common movies, they will likely have similar ratings for

movies that one person has not seen.

Paragon shows that this structure can be applied to computer

systems where we have a conigurable computer system and many

benchmark applications [17]. Given some new, unseen application,

we want to sample a small number of conigurations and estimate

the behavior in all others. Having done so, we can use those esti-

mates to perform coniguration, scheduling or resource allocation

optimally. As shown in Figure 2b now each row is a system conigu-

ration (e.g., an assignment of cores and clockspeed to an application)

and each column is an application. In this case, we may have com-

plete information about some set of benchmarks, but incomplete

information about the new application that we can only sample in

a small number of conigurations.

The main beneit of this approach is generality. The conigura-

tions can be quite broad, including assignment of resources to an

application in a server [47] or mobile system [45], assignment of a

request to a node in a heterogeneous data center [17], or a combi-

nation of resource assignment and application co-scheduling in the

data center [18]. These techniques can be applied to a broad range

of computer systems without deep knowledge of the underlying

architecture, but simply listing what conigurations are available.

Two downsides of this approach are mentioned in the introduc-

tion: scarce data and asymmetric beneits. The efort needed to

ill in the known data is much larger for computer systems than

it is for making movie recommendations, meaning computer sys-

tems must work with scarce data. Also, for recommender systems

all data points are equally usefulÐthere is no reason to favor one

Generative and Multi-phase Learning for Computer Systems Optimization ISCA ’19, June 22ś26, 2019, Phoenix, AZ, USA

Figure 3: Worklow of proposed generative model.

movie over another. In computer systems, however, typically only

a handful of conigurations are actually useful, and Figure 1 is a

concrete example of this asymmetric response. The vast majority

of conigurations do not fall on the frontier of optimal tradeofs

and their estimations can be highly inaccurate without afecting

the optimality of the computer system.

In Section 4 we present a technique to generate representative

data and deal with the challenge of scarce data. Section 5 shows

how to divide a sample budget to bias the learner towards those

conigurations that are most important for the system problem to

be ultimately solved.

4 GENERATING DATA FOR ACCURACY

We describe a general way to improve the accuracy of learning

by example for computing systems (as formulated in the previous

section). Speciically, we use the statistical properties of the known

data to generate new łknownž data. While generating data is easy

(e.g., it could be trivially done with a random number generator),

the challenge is to generate data that is both diferent from the

known applications and yet still realistic. The generated data must

be diferent to increase the learner’s accuracy when it encounters

an application with new behavior. The generated data must be

realistic to ensure it captures some plausible behavior that might

be exhibited by an unseen application.

To generate diferent, yet plausible behavior, we propose the

use of a Gaussian Mixture Model (GMM) as part of the worklow

illustrated in Figure 3. We irst divide the data set into disjoint

chunks. We then use Gaussian mixture models (GMMs) to capture

the density of diferent behaviors in those chunks. A GMM is a

weighted sum of Gaussians. A standard GMM would capture the

data in our known data set. To generate new data, we swap the

highest and lowest weights. This swap ampliies behavior that was

present, but rare, in our original data set, while damping the impact

of common behavior. The intuition is that this swap should meet the

challenge of generating diferent, but plausible data by amplifying

the importance of existent, but rare behavior. We then use this

modiied GMM to generate new data, represented as extra columns

in the matrix formulation of Figure 2b. This larger matrix is trivially

compatible with existing matrix completion algorithms.

We give a brief overview of GMMs (which can be skipped for

familiar readers). We then provide more detail on how to use a

GMM to generate realistic, but diverse data.

4.1 GMM Overview

When analyzing a data set, a common assumption is that each

observation comes from a Gaussian distribution, but assuming a

single distribution is restrictive and may not make intuitive sense.

Alternatively, we can model each observation as being drawn from

a inite setÐormixtureÐof models. For example, consider the height

of an adult. Since men are typically taller than women, we capture

height as a mixture of two components. If we randomly choose

an adult, there is a 50% chance of choosing a man or woman, and

these proportions are called mixture proportions/weights. In this

example, the model is a weighted combination of two Gaussian

distributionsÐhence, the name Gaussian mixture model (GMM).

In a GMM, each observation is generated by irst choosing one

of the Gaussians, and then sampling from it. Given N data points

xi ∈ R
D , i = 1, . . . ,N , a GMM assumes K components, where the

proportion (or weight) of the k-th component is wk . Notice that

the proportions/weights represent the probability that xi belongs

to the k-th component. Thus:

p (xi) =

K
∑

k=1

wkд(xi |µk , Σk) (1)

where xi is the observation,wk is themixtureweight, andд(xi |µk , Σk)

is the component Gaussian. Each component Gaussian is aD-variate

Gaussian function of the form

д(xi |µk , Σk) =
1

(2π)
D

2 |Σi |
1
2

exp

(

−
1

2
(xi − µk)

⊤Σ−1
i
(xi − µk)

)

,

where the mixture weights are non-negative and sum to one.

The GMM is parameterized by mean µk , co-variance Σk and

mixture weightswk from all components, which cannot be written

in closed form. Therefore, the Expectation Maximization algorithm

is used to ind these values [28].

4.2 Generating Data with a GMM

We now address the scarce data challenge with a generative model

based on aGMM.Given a datamatrix where rows are conigurations

and columns are applications, we take the following steps.

Divide. The data matrix is split into smaller chunks according to

their conigurations. The data within each chunk should have simi-

lar distribution. For example, the rows with same number of cores

can belong to the same chunk. The chunk size can be determined by

any clustering algorithm such as k-means [2] or BSCAN [22]. Given

the known coniguration distribution, we use k-means clustering

since it allows us to determine kÐi.e., the number of chunksÐby

incorporating this prior knowledge.

Learn. For each chunk, it a GMM to obtain each mixture compo-

nent. The number of components is decided by cross validation: the

data matrix is split into training and validation sets, and diferent

numbers of components are selected to ind the best based on the

corresponding training and validation likelihood values.

Swap. For each chunk, ind the components with minimum and

maximum proportions (weights) and swap those extreme values to

create a new GMM. This step is crucial since it aims to increase data

variations. Intuitively, a component with maximal proportion has

actually been relected substantially from the original data, whereas

a component with minimum proportion represents rare behavior.

As such, the data generated from this new GMM should amplify

the data that have little inluence in the original data.

Generate. For each chunk, generate new data based on the GMM

with with new mixture proportions from the above step.

ISCA ’19, June 22ś26, 2019, Phoenix, AZ, USA Yi Ding, Nikita Mishra, and Henry Hofmann

Figure 4: Worklow of proposed multi-phase sampling scheme.

Concatenate. Append the new data chunks with the original data

to complete the process.

4.3 Discussion and Limitations

We propose a novel modiication of existing GMM methods that

ampliies rare behavior in our training set. We do not use the GMM

to make predictions itself, however, because GMMs are not good

tools for predicting unseen behavior. Rather, their value is in char-

acterizing existing data and especially for inding sub-populations

within a larger population. Our novelty is using this method to ind

rare behavior and then changing the weights to amplify the rare

behavior, generating data that is realistic, but diferent from the

measured data. This process diversiies the training set (without

additional measurement) and improves learning accuracy.

There are limitations to this approach, of course. The proposed

method will make it more likely that the learners pick up on rare

behavior in the original data set. If the test data has behavior that is

non-existent in the training set, then this approach is not expected

to signiicantly improve accuracy. In future work, this approach

could perhaps be improved by generating completely new data that

is still realistic. One approach might be capturing existing behavior

and łphase shiftingž it so that trends remain, but the peak behaviors

occur at diferent conigurations that never exhibit peak behavior

in the original training set.

5 MULTI-PHASE SAMPLING

Figure 4 illustrates multi-phase sampling, which biases the learner

towards the most important points for the system optimization

problem that we ultimately care about. We assume the same setup

as the prior sections: there is a known body of applications forwhich

we have performance and power data in all conigurations and the

goal is to observe a new application in a small number of conigu-

rations and then predict the behavior in all other conigurations.

Conigurations are again an assignment of system resourcesÐe.g.,
a speciic allocation of cores, core types, and clockspeedsÐto an

application.

In the irst phase, given a sampling budgetN and a new, unknown

application, we takeN /2 samples. Each learning algorithm can have

its own sampling strategy for this phase and we use the sampling

strategies established in the literature for each learner studied.

After obtaining the sampled conigurations, we run each learner to

get an initial estimation of performance and power for the target

application. With these estimations, we compute the estimated

energy eiciency for each coniguration as:

eiciency =
estimated performance

estimated power
. (2)

1: Input: Known and unknown applications, sampling budget N .

2: while True do

3: Phase-1:

• Sample half of the budget N /2 conigurations.

• Run learner to get an initial estimation.

• Rank conigurations by estimated energy eiciency.

4: Phase-2:

• Sample the N /2 most energy eicient conigs.

• Run learner again to obtain the inal estimation.

5: end while

6: Output: Estimation of performance and power.

Algorithm 1:Multi-phase sampling approach.

Then, we rank the unseen application’s conigurations in terms of

their energy eiciency.

In the second phase, we collect additional N /2 samples from the

most energy eicient conigurations. We then use all N samples to

run the learner again to obtain the inal performance and power

estimates for all conigurations for the new application.

The intuition behind this approach is that theN /2 conigurations

sampled in Phase 2 will be biased towards the optimal frontier

of performance/power tradeofs. Thus, Phase 2’s learning should

favor these points (where the sampling concentrated) compared to

traditional approaches.

More formally, meeting latency constraints with minimal energy

can be written as a linear optimization problem where the decision

variables are the amount of time to spend in any coniguration

[37]. Furthermore, the optimal solution to this problem will only

consider conigurations that appear on the optimal frontier of the

performance/power tradeof space (as illustrated in Figure 1). Thus,

the irst phase of the proposed approach is designed to create an

initial estimate of the optimal frontier and, therefore, an estimate of

the small number of states that may be used in an optimal solution.

We rank conigurations by energy eiciency because we do not

know the true optimal frontier, but we do know that the points

on the frontier must be the most energy eicient. This two-phase

approach we evaluate here could be extended to have arbitrarily

many stages, at a cost of additional overhead for each stage. It is

also possible to extend the initial phases to use metrics other than

energy eiciency. For example, it may produce better results if we

used a metric that balanced energy eiciency with an attempt to

spread the sampled conigurations out across the range of possible

performance. We leave these explorations for future work.

6 EXPERIMENTAL SETUP

Our goal is to show: (1) the generative model improves learning

accuracy while (2) multi-phase sampling improves energy. Further-

more, we want to demonstrate that these two results generalize to

multiple systems, applications, and learners.

6.1 Systems

Our mobile device is an ODROID-XU3 with a Samsung Exynos 5

Octa processor, based on an ARM big.LITTLE architecture, running

Ubuntu 14.04. The 4 big cores support 19 clockspeeds, the 4 LITTLE

Generative and Multi-phase Learning for Computer Systems Optimization ISCA ’19, June 22ś26, 2019, Phoenix, AZ, USA

ones have 13. Thus the mobile conigurations are combinations of

cores, core types, and clockspeed for the cores.

The server is a dual-socket Linux 3.2.0 system with two Intel

Xeon E5-2690 processors, supporting hyperthreads and TurboBoost.

Each socket has 8 cores/16 hyperthreads and a 20 MB last-level

cache. Because the server system is dual socket, it also has two

memory controllers. Therefore, conigurations on this system rep-

resent a combination of the number of sockets, the cores per socket,

whether hyperthreads are used, the clockspeed for each socket, and

the number of memory controllers. We allow the learners to use

TurboBoost, but it is seenÐthrough the cpufrequtils packageÐas

just the highest clockspeed available.

Through their presentation of diferent resources and diferent

resource types, these two systems stress the learners’ abilities to

handle a wide variety of conigurations. We only consider systems

conigurations and not application-level ones. In other words, the

conigurations are assignments of available system resources to an

application. For example, on the mobile system a coniguration is

an assignment of big or LITTLE cores, plus the clockspeed of those

cores. On the server system a coniguration is a number of sockets,

memory controllers, cores per socket, hyperthreads (on or of), and

clockspeed.

6.2 Applications

We test a variety of applications on both the mobile and server

systems using benchmarks drawn from Parsec [5], Rodinia [10],

ParMiBench [34], and MineBench [48]. Parsec and Rodinia contain

a number of general purpose workloads. ParMiBench contains

multithreaded versions of the embedded MiBench benchmarks [29],

and represent workloads common to mobile computing. MineBench

contains ML and data mining workloads that represent analytics

problems for server systems. All applications are multi-threaded.

We use four threads on the mobile and thirty-two threads on the

server system. We choose four threads for mobile because the big

and LITTLE clusters on our platform each have four cores and

the use of four threads stresses the learners’ abilities to determine

when to migrate between clusters. We strike a balance between

achieving some overlap of the application sets on each processor

type and stressing the diferent use cases for each. The primary

limiting factor on application testing is establishing ground truth

to evaluate the learners, which is done by running each application

in all possible conigurations for all inputs. For many applications

it takes days to establish ground truth on mobile (and never less

than hours).

On mobile we use a variety of typical mobile and embedded

workloads including video encoding (x264), route planning bfs, and

encryption sha. We also use some more computationally intensive

tasks which are not typically run on mobile systems today, but

stress the learning algorithms and demonstrate workloads that

will likely be pushed to mobile (or the edge) in the near future.

These include advanced signal processing (lud), image processing

(srad), video analytics (bodytrack), machine learning (backprop

and kmeans) . The server system includes a number of exemplary

workloads like data analytics (apr, btree, kmeans, svmrfe, and

many others). We also include a search webserver (swish++) and

some scientiic computing benchmarks (cfd, nn).

ba
ck
pr
op bfs

bla
ck
sc
ho
les

bo
dy
tra
ck

fac
es
im
fer
ret

he
ar
tw
all

ho
tsp

ot

jac
ob
i

km
ea
ns

km
ea
ns
nf

lav
am

d

leu
ko
cy
te lud nw

ra
da
r
sh
a
sra

d

str
ea
m

x2
64
−
du
ck
s

x2
64
−
na
tiv
e

0.3

0.6

0.9

la
ck
-o
f-
i
t

(1
-
R
2
)

Figure 5: Lack-of-it for performance vs clock-speed on mobile.

ap
r

ba
ck
pr
op bfs

bla
ck
sc
ho
les

bo
dy
tra
ck
bt
ree cfd

flu
ida

nim
ateho

p

km
ea
ns lud nn

pa
rti
cle
fil
terpls

a

sc
alp

ar
c

se
mp

hy

str
ea
mc

lus
ter

sv
mr
fe

sw
ap
tio
ns

sw
ishvip

s
x2
64

0.2

0.4

0.6

0.8

la
ck
-o
f-
i
t

(1
-
R
2
)

Figure 6: Lack-of-it for performance vs clock-speed on server.

In our experiments we consider only a single, multi-threaded ap-

plication at a time. Whether on mobile or server, our goal is to meet

an application latency target with minimal energy by coniguring

system resources appropriately. Given the latency requirements,

we currently consider a single application at a time and leave multi-

programmed scheduling for future work.

6.3 Application and System Diversity

To demonstrate the diversity in workloads we compute a simple

linear regression for each application’s performance and clock-

speed on both systems. The intuition is that if an application scales

linearly with clockspeed, it is likely compute-intensive, while no

scaling would indicate memory intensity. We quantify this intuition

using lack-of-it, which is simply 1 − R2, where R is the correlation

coeicient for this simple linear model. Low numbers mean the lin-

ear model its well, indicating compute-intensive workloads. High

numbers indicate the opposite.

Figures 5 and 6 show the results for the applications on mobile

and server, respectively. The igures show a wide variety of behav-

ior from very compute-intensive to very memory-intensive, with

several examples falling in between these extremes.

In addition, we demonstrate the diversity of benchmarks and

the diference between machines by inding the true optimal per-

formance/power tradeofs for all benchmarks (on average across

all inputs) on both systems. Figures 7 and 8 show the frequency

with which each coniguration appears on the frontier of optimal

tradeofs. We note that 63 (out of 128 total) conigurations appear

on at least one mobile application’s optimal frontier, while 96 (out

of 1024) conigurations appear on at least one server application’s

optimal frontier. The shape of these distributions is further evi-

dence of the diferent qualities of the architectures. Mobile has two

clusters of conigurations that appear on the optimal frontier while

the server has a more uniform distribution.

We further demonstrate the diiculty of the learning problem by

measuring the number of conigurations that appear on the optimal

frontier for each application on each system. Figure 9 shows this

data for the mobile while Figure 10 shows the data for the server.

The largest number of conigurations for any application on mobile

ISCA ’19, June 22ś26, 2019, Phoenix, AZ, USA Yi Ding, Nikita Mishra, and Henry Hofmann

0 20 40 60 80 100 120

5

10

15

Configurations

#
A
pp
li
ca
ti
on
s

Figure 7: Distribution of optimal conigurations for mobile.

0 200 400 600 800 1,000

5

10

15

Configurations

#
A
pp
li
ca
ti
on
s

Figure 8: Distribution of optimal conigurations for server.

ba
ck
pr
op bfs

bla
ck
sc
ho
les

bo
dy
tra
ck

fac
es
im
fer
ret

he
ar
tw
all

ho
tsp

ot

jac
ob
i

km
ea
ns

km
ea
ns
nf

lav
am

d

leu
ko
cy
te lud nw

ra
da
r
sh
a
sra

d

str
ea
m

x2
64
−
du
ck
s

x2
64
−
na
tiv
e

5

10

15

#
C
o
n
f
i
g
u
r
a
t
i
o
n
s

Figure 9: Optimal coniguration count for mobile applications.

ap
r

ba
ck
pr
op bfs

bla
ck
sc
ho
les

bo
dy
tra
ck
bt
ree cfd

flu
ida

nim
ateho

p

km
ea
ns lud nn

pa
rti
cle
fil
terpls

a

sc
alp

ar
c

se
mp

hy

str
ea
mc

lus
ter

sv
mr
fe

sw
ap
tio
ns

sw
ishvip

s
x2
64

5

10

15

#
C
o
n
f
i
g
u
r
a
t
i
o
n
s

Figure 10: Optimal coniguration count for server applications.

is 16, 15 for the server. This data indicates that while a large number

of conigurations appear on some optimal frontier, for any one
application just a fraction of this total are relevant.

In summary, this data shows that these two systems will stress

the learning algorithms’ generality. The applications exhibit a wide

range of behaviors, the two systems have diferent behavior, and of

the large number of possible conigurations, only a small number

appear on any one application’s optimal frontier.

6.4 Learning Models Studied

We evaluate our proposed framework on ive following learning

models, where the irst four are matrix completion based algorithms,

and the last one is a Bayesian approach:

(1) MCGD: an approximate matrix completion algorithm solved via

gradient descent [36].

(2) MCMF : a matrix completion algorithm solved by factorizing the

matrix into bi-linear form [38].

(3) Nuclear: an exact matrix completion algorithm by minimizing

the matrix’s nuclear norm [7, 8]. This technique has been demon-

strated to provide good systems outcomes in scheduling for data

centers [17, 18].

(4) WNNM: an exact matrix completion algorithm by minimizing

the matrix’s weighted nuclear norm [27].

(5) HBM: a hierarchical Bayesian model for recovering optimal per-

formance/power tradeofs [47].

To the best of our knowledge, this is the irst comprehensive eval-
uation of matrix completion algorithms for systems.

For each learner, we evaluate four variations:

(1) Vanilla: the vanilla framework that only uses the basic learners

to estimate the missing entries for speed/power.

(2) GM: uses the generative model to augment the data matrix and

then apply the learners to perform estimation.

(3) MP : use multi-phase sampling framework to perform estimation.

(4) MP-GM: use generative model to augment the data matrix and

then apply the multi-phase sampling framework to perform esti-

mation.

6.5 Evaluation Metrics

For each application, we evaluate prediction accuracy by using

adjusted R2 [20], which measures the goodness-of-it between the

ground-truth y and estimated value ŷ:

R2 = max

(

0, 1 −
∥y − ŷ∥2

∥y − ȳ∥2

)

, (3)

where n is the number of conigurations (length of vector y) and ȳ

is the mean vector of y.

We evaluate energy savings by running every application in

every resource coniguration. To compare across applications, we

normalize energy:

Normalized energy = 100% ∗
(emeasured

eoptimal
− 1

)

, (4)

where emeasured is measured energy and eoptimal is the optimal

energy. This metric shows the percentage of energy over optimal

by subtracting 1.

6.6 Evaluation Methodology

We collect the true performance and power for all applications in all

conigurations for both the mobile and server systems. All accuracy

and energy evaluations are all done with respect to this data, which

is collected through exhaustive measurement. When evaluating the

accuracy and energy savings, we use leave-one-out cross validation.
To test application i , we form a set of all other applications excluding

i , so all other applications form the full columns of the data matrix

from Figure 2b. We then sample i in several conigurations to form

the partial, last column from Figure 2b.

We then use the algorithms mentioned above with combinations

of our proposed techniques to estimate each application’s behavior

in unsampled conigurations. These estimations are passed to an

open-source resource allocator, which assigns resources to meet

goals [32]. For each application we vary the performance goal to

require from 10-95% utilization to meet the goal in the worst case.

For this work, we assume we know the worst case timing for any

input and application if processed with all available resources. Thus,

we are assured (and we manually verify) that the scheduler will

meet the performance requirements and we focus on the energy

savings. This methodology prevents a learner from łcheatingž by

passing the scheduler a model that reduces energy by delivering

low performance.

Generative and Multi-phase Learning for Computer Systems Optimization ISCA ’19, June 22ś26, 2019, Phoenix, AZ, USA

80.0

90.0

100.0

P
er
fo
rm

an
ce

A
cc
u
ra
cy

(%
)

Vanilla GM MP MP − GM

MCGD MCMF Nuclear WNNM HBM

80.0

90.0

100.0

P
ow

er

A
cc
u
ra
cy

(%
)

Figure 11: Performance and power accuracy on mobile (higher is

better).

0.0
20.0
40.0
60.0
80.0
100.0

P
er
fo
rm

an
ce

A
cc
u
ra
cy

(%
)

Vanilla GM MP MP − GM

MCGD MCMF Nuclear WNNM HBM

0.0
20.0
40.0
60.0
80.0
100.0

P
ow

er

A
cc
u
ra
cy

(%
)

Figure 12: Performance and power accuracy on server (higher is

better).

7 EVALUATION

We start this sectionwith some high-level summary results.We then
present detailed results for learning accuracy and energy. We then
perform a sensitivity analysis to show how the learners behave as a
function of their sampling budget. We inally evaluate the overhead
of all techniques.

7.1 Summary Results

7.1.1 Accuracy. We show the estimation accuracy for performance
and power on both mobile and server in Figure 11 and Figure 12.
The x-axes show the learner, while the y-axes show the average
accuracy across all applications. There is a bar for each variation
of: Vanilla, GM, MP, and MP-GM.

The results for the vanilla Nuclear and HBM learners are basi-
cally equivalent to published work using those same learners in
similar scenarios [45, 47], which gives us conidence that our im-
provements are representative. Indeed, we see that the GM method
greatly improves accuracy for all learners on mobile. On server,
GM improves accuracy for MCMF from, efectively, zero to some-
thing non-zero. multi-phase sampling does not, in general improve
accuracy. Somewhat counter-intuitively, the combination of GM
and multi-phase sampling also does not improve accuracy. Table 1
shows the average improvement in percentage points for each
technique. From this table it is clear that GM has a large efect on
accuracyÐmore than 8 percentage points on averageÐwhile the

other techniques have little efect.

Weighted Nuclear Norm Minimization is the best vanilla learner,

butÐto our knowledgeÐthis technique has not been applied to

Table 1: Average percentage points of accuracy improvement.

GM MP MP − GM

Mobile
Performance 1.8 1.4 2.3
Power 4.3 0.6 3.4

Server
Performance 9.0 −0.2 −0.3
Power 20.5 −0.4 0.1

Average 8.9 0.4 1.4

MCGD MCMF Nuclear WNNM HBM

20.0

40.0

60.0

E
n
er
gy

A
bo

ve

O
pt
im

al
(%
)

Vanilla GM MP MP − GM

Figure 13: Energy compared to optimal onmobile (lower is better).

MCGD MCMF Nuclear WNNM HBM

10.0

20.0

30.0

E
n
er
gy

A
bo

ve

O
pt
im

al
(%
)

Vanilla GM MP MP − GM

Figure 14: Energy compared to optimal on server (lower is better).

computer systems optimization before. However, the proposed GM

method improves even this best-of-class technique. In addition, the

GM method brings other techniques, which have been applied to

systems (Nuclear [17, 18] and HBM [47]) to the similar levels of

accuracy. We conclude that GM can have a dramatic efect on the
accuracy of performance and power predictions.

7.1.2 Energy. Figures 13 and 14 show the average energy over

optimal (y-axis) for each technique (x-axis) on the mobile and server.

These igures show two key points: (1) despite the GM method’s

much higher accuracy, it often has a higher energy than the vanilla

learner and (2) even though it is generally lower in accuracy, the

multi-phase method has lower energy than the vanilla methods.

These trends are starkly visible in Table 2, which shows the im-

provement in energy compared to the vanilla learners. This table

compares the energy of the augmented method (GM, MP, MP-GM)

to the energy of the vanilla method and shows how much closer

the augmented method is to idle. The results are expressed as a

percentage so that we can compare the efects of poor learners to

good ones. Negative numbers show that the energy is worse using

the method than just using the plain learner. The table shows that

the multi-phase sampling method gets much closer to optimal than

GM or even the combination of GM and MP. In fact, on average,

the GM method has a substantial negative efect on energy.

Table 2: Average energy improvement. (Higher is better).

GM MP MP − GM
Mobile −14% 41% 22%
Server −22% 11% −6.5%

7.2 Detailed Accuracy Results

We ind that power is, generally, much easier to predict than perfor-

mance. Therefore we present only performance accuracy detailed

ISCA ’19, June 22ś26, 2019, Phoenix, AZ, USA Yi Ding, Nikita Mishra, and Henry Hofmann

50

75

100

M
C
G
D

A
cc
u
ra
cy

(%
)

Vanilla GM MP MP − GM

50

75

100

M
C
M
F

A
cc
u
ra
cy

(%
)

50

75

100

N
u
cl
ea
r

A
cc
u
ra
cy

(%
)

50

75

100

W
N
N
M

A
cc
u
ra
cy

(%
)

ba
ck
pr
op bfs

bla
ck
sc
ho
les

bo
dy
tra
ck

fac
es
im

fer
ret

he
ar
tw
all

ho
tsp

ot

jac
ob
i

km
ea
ns

km
ea
ns
nf

lav
am

d

leu
ko
cy
te lud nw

ra
da
r

sh
a

sra
d

str
ea
m

x2
64
−
du
ck
s

x2
64
−
na
tiv
e

50

75

100

H
B
M

A
cc
u
ra
cy

(%
)

Figure 15: Comparison of performance accuracy per application for mobile system (higher is better).

50

75

100

M
C
G
D

A
cc
u
ra
cy

(%
)

Vanilla GM MP MP − GM

50

75

100

M
C
M
F

A
cc
u
ra
cy

(%
)

50

75

100

N
u
cl
ea
r

A
cc
u
ra
cy

(%
)

50

75

100

W
N
N
M

A
cc
u
ra
cy

(%
)

ap
r

ba
ck
pr
op bfs

bla
ck
sc
ho
les

bo
dy
tra
ck

bt
ree cfd

flu
ida

nim
ate ho

p

km
ea
ns lud nn

pa
rti
cle
fil
ter pls

a

sc
alp

ar
c

se
mp

hy

str
ea
mc

lus
ter

sv
mr
fe

sw
ap
tio
ns

sw
ish vip

s
x2
64

50

75

100

H
B
M

A
cc
u
ra
cy

(%
)

Figure 16: Comparison of performance accuracy per application for server system (higher is better).

results to save space. Figures 15 and 16 show the performance es-
timation accuracy for all 5 learning algorithms on the mobile and
server system, respectively. The x-axis shows each benchmark and
the y-axis shows the accuracy. Each benchmark has four bars, one
for each of Vanilla, GM, MP, and MP-GM.

These igures show the prediction accuracy is over 80% for all
learners on mobile, with a wider range on server. In particular,
MCMF and Nuclear have lower prediction accuracy than the other
learners for both performance and power on the server. This inding
is consistent with the characterizations in Figures 9 and 10 where
the mobile data is clustered, but the server data is evenly distributed.

7.3 Detailed Energy Results

As can be seen in the accuracy results, some applications are much
easier to predict than others. To save space we show just the energy
savings for the hardest to estimate applications, which we deine as
those that have lack-of-it greater than 0.5 for mobile and greater
than 0.6 for server. Figures 17 and 18 show these energy results.

These results not only provide detail showing the energy be-
havior for the toughest applications, they also demonstrate that
multi-phase sampling is robust to these diicult applications. While
the energy for the worst applications is, not surprisingly, higher
than the average energy, multi-phase sampling still saves consid-
erable energy. For example, the average energy over optimal for
HBM-MP on mobile is 3.7%, while the average energy for these
hardest applications is 4.3%.

Generative and Multi-phase Learning for Computer Systems Optimization ISCA ’19, June 22ś26, 2019, Phoenix, AZ, USA

0

40

80

M
C
G
D

A
bo

ve
op

ti
m
al
(%
) Vanilla GM MP MP − GM

0

40

80

M
C
M
F

A
bo

ve
op

ti
m
al
(%
)

0

30

60

N
u
cl
ea
r

A
bo

ve
op

ti
m
al
(%
)

0

20

40

W
N
N
M

A
bo

ve
op

ti
m
al
(%
)

bla
ck
sc
ho
les

bo
dy
tra
ck

fac
es
im

fer
ret

jac
ob
i

km
ea
ns
nf lud

ra
da
r

sra
d

str
ea
m

0

20

40

H
B
M

A
bo

ve
op

ti
m
al
(%
)

Figure 17: Energy savings per application formobile system (lower

is better).

0

30

60

M
C
G
D

A
bo

ve
op

ti
m
al
(%
) Vanilla GM MP MP − GM

0

30

60

M
C
M
F

A
bo

ve
op

ti
m
al
(%
)

0

10

20

N
u
cl
ea
r

A
bo

ve
op

ti
m
al
(%
)

0

10

20

W
N
N
M

A
bo

ve
op

ti
m
al
(%
)

ap
r

bfs

bla
ck
sc
ho
les cfd ho

p

km
ea
ns lud nn

sc
alp

ar
c

se
mp

hy
0

10

20

H
B
M

A
bo

ve
op

ti
m
al
(%
)

Figure 18: Energy savings per application for server system (lower

is better).

7.4 Accuracy and Energy for Best Learners

As mentioned above, MCGD and MCMF are clearly weaker learners
than the other three. These results are not terribly surprising as
Nuclear [17, 18] and HBM [45, 47] have both been used in prior
systems work, while WNNM only recently appeared in the ML
literature [27]. In this section we evaluate the accuracy and energy
results considering only these, best-in-class learners and omitting
MCGD and MCMF.

When removing MCGD and MCMF the numbers change, but
the broad conclusions are even stronger. Speciically, GM improves
performance/power accuracy by on mobile and server as shown
in Table 3. The energy savings for GM are worse when removing
MCGD and MCMF as shown in Table 4. MP’s accuracy is almost the
same, but the energy improvements are 30% and 12% on mobile and
server, respectively. The MP-GM results are not signiicantly difer-
ent in this scenario. Thus, when focusing on the most sophisticated
learners, the accuracy improvements are slightly smaller. MP’s en-
ergy improvements are smaller in magnitude, but relatively much
more signiicant. We believe these results support the conclusion
that improving state-of-the-art learners’ accuracy does not improve
systems outcomesÐfor the constrained optimization problems ex-

plored in this paperÐbut accounting for the problem structure (in

this case, by modifying the sampling procedure) does improve the

system outcome.

Table 3: Accuracy improvement for best learners.

GM MP MP − GM

Mobile
Performance 2.4 1.2 1.7
Power 4.1 0.6 2.4

Server
Performance 9.6 −0.6 −1.2
Power 3.4 −1.2 −0.7

Average 4.8 0.0 0.6

Table 4: Energy improvement for the best learners.

GM MP MP − GM
Mobile −45% 31% 0.0%
Server −31% 12% −8.3%

7.5 Sensitivity to Sample Size

7.5.1 Sample-Complexity Results. One of the key parameters of

all learners is the number of samples it must measure to produce

accurate estimates. All of the above measurements were taken with

the mobile and server systems conigured to sample 20 and 120

conigurations, respectively. In Figure 19, we show the accuracy

(averaged over all benchmarks) for performance (power is omitted

for space) estimation as a function of sample size. Since our accuracy

measurement is adjusted R2, it is not surprising to see zeros in

MCGD andMCMF on server for small sample sizes. We also observe

that GM and MP-GM always perform better than Vanilla and MP

across diferent sample sizes, which justiies the ability of generative

models to improve accuracy.

7.5.2 Energy Savings for Reduced Samples. We now explore energy

savings for reduced samples. While it is not feasible to measure

energy savings at every possible sample size, we reduce the sample

sizes by half and rerun all the above experiments. The results for

mobile are very similar to the results already presented: WNNM-

GM has highest accuracy, while HBM-MP has the lowest energy.

Table 5: Average energy improvement with reduced samples.

GM MP MP − GM
Average Case 17% 15% 2%
Worst Apps 15% 21% −8%

Table 5 shows the results for the server with half the sample size.

The table shows the energy improvement relative to vanilla for

each of our proposed techniques. There is one row for the average

case and another for the worst applications (again those that had

the worst energy for WNNM-Vanilla).

ISCA ’19, June 22ś26, 2019, Phoenix, AZ, USA Yi Ding, Nikita Mishra, and Henry Hofmann

10 15 20 25 30
80

90

100

M
o
b
il
e

A
cc
u
ra
cy

(%
)

M
C
G
D

Vanilla GM MP MP − GM

10 15 20 25 30
80

90

100

M
C
M
F

10 15 20 25 30
80

90

100

N
u
cl
ea
r

10 15 20 25 30
80

90

100

W
N
N
M

10 15 20 25 30
80

90

100

H
B
M

20 40 60 80 100 120
0

50

100

S
e
rv
e
r

A
cc
u
ra
cy

(%
)

M
C
G
D

20 40 60 80 100 120
0

50

100
M
C
M
F

20 40 60 80 100 120
0

50

100

N
u
cl
ea
r

20 40 60 80 100 120
0

50

100

W
N
N
M

20 40 60 80 100 120
0

50

100

H
B
M

Figure 19: Sensitivity analysis of performance accuracy for mobile and server systems. The x-axis is the sample size.

These results illustrate a complicated aspect of our study. The
sample complexity plots show that, while all learners have a point
of diminishing returns, they occur at diferent locations for dif-
ferent learners. In this section, we are investigating sample sizes
where some learners have suicient samples and others do not.
At this point, for example, GM really improve MCGD’s energy be-
cause it was not at the point of diminishing returns. Other learners
are beyond that point though, and even in this case we see that
multi-phase sampling signiicantly improves energy on the hardest
apps. These results indicate that multi-phase sampling is robust to
reduced sample sizes.

7.6 Overhead

We collect the overhead for all combinations of systems, learners,
and proposed augmentations. These overheads are listed in Table 6
and Table 7 for the mobile and server, respectively. The tables show
the time amortized over all conigurations. These results show that
the GM and multi-phase methods add some overhead compared to
the vanilla learning systems, but these results are not surprising
and we believe the overhead is tolerable for the beneits.

For example, the GM method is expensive because the EM algo-
rithm on which it relies is quite expensive. However, GM creates
new columns in the known data matrix. An alternative to approach
is to ind a new application to add to the known data by exhaustively
characterizing it in all conigurations. On the systems we study,
this exhaustive characterization takes hours up to a day, and there
is no guarantee that the new application will exhibit signiicantly
diferent behavior than the common case in the data set. Compared
this approach of manually adding data to the known applications,
GM is orders of magnitude faster and provides better statistical
guarantees that it will generate useful data.

Multi-phase sampling also adds overhead because it runs these
fairly computationally expensive learners twice, once in each phase.
One direction of future work is to look at further optimizations to
this approach. Perhaps diferent learning techniques can be com-
bined to greater efect. For example WNNM is the highest accuracy
and less expensive than HBM, so using multi-phase sampling with
WNNM in Phase 1 and HBM in Phase 2 might produce better accu-
racy and energy savings with lower overhead.

Table 6: Learner overhead for mobile system (in ms).

Vanilla GM MP MP − GM
MCGD 1.1 1.9 2.3 2.9
MCMF 0.1 0.7 0.1 0.7
Nuclear 2.2 3.0 3.4 4.6
WNNM 1.2 2.7 2.3 3.8
HBM 2.5 3.8 4.8 6.1

Table 7: Learner overhead for server system (in ms).

Vanilla GM MP MP − GM
MCGD 0.9 1.2 1.8 2.0
MCMF 0.1 0.2 0.3 0.2
Nuclear 0.7 0.8 1.0 1.1
WNNM 0.3 0.6 0.6 0.9
HBM 13.2 15.4 19.0 23.9

7.7 Discussion

So far, detailed results have been presented using predictive mod-
eling to assign system-level resources to applications such that
latency constraints are met with minimal energy. We have com-
pared existing approaches to this problem to the same approaches
augmented with generative and multi-phase enhancements. For
this speciic resource management problem the results suggest that:
• There is a point of diminishing returns in applying learning.
The MCGD and MCMF methods are clearly worse (in ac-
curacy and performance) than the other three. However,
even the best vanilla learner (WNNM) shows little energy
improvement over the others in its class (Nuclear and HBM).
• The generative model improves accuracy. It is signiicant that
we can generate data (which has no measurement cost and
is many orders of magnitude faster than exhaustively mea-
suring an application) and improve learning accuracy.
• Themulti-phasemethod improves energy.By biasing the learner
to the conigurations (resource allocations) that are likely
to be most energy eicient, this approach improves energy
consumption, as long as the learning technique to which it
is being applied is accurate enough. For example, our initial
results show that this technique has signiicant accuracy
savings, but we ind that the energy savings can diminish
for some learners with reduced sample size.
• Improving accuracy does not necessarily improve energy con-
sumption. Because of asymmetric response and diminishing

Generative and Multi-phase Learning for Computer Systems Optimization ISCA ’19, June 22ś26, 2019, Phoenix, AZ, USA

returns, it is possible to greatly improve accuracy by improv-
ing estimations of the conigurations that are not on the
optimal frontier of performance and power.
• The systems outcome can be improved without improving the
learner’s accuracy.Multi-phase sampling does not improve
overall accuracy, but has a signiicant efect on energy even
for the best in class learners.

We expect the same broad behavior for any learners whose out-
put is used to solve a constrained optimization problem in computer
systems. The nature of such problems means that, for any appli-
cation, only a small number of conigurations will appear on the
polytope of possible optimal solutions.

The key insight from this study is that only the small subset of
optimal conigurations matter for systems outcomesÐimproving

accuracy for the non-optimal conigurations is not helpful, but

getting the optimal set correct is essential. For straight optimization

problemsświthout constraints; e.g., ind the most energy eicient

conigurationÐthe results might not hold. Similarly, if we could

build computing systems such that all conigurations were on the

frontier of optimal tradeofs for all applications then the results

might not hold, as the accuracy of each coniguration’s predicted

behavior would directly afect the solution to the optimization

problem.

8 CONCLUSION

As machine learning and AI researchers continue to produce as-

tonishing results, it is natural to simply apply each new learning

techniques to computing systems and reap the beneit. This process

typically follows an approach of training a learner for maximum

accuracy and then deploying it to build a model that some computer

management system (e.g., scheduler, coniguration management,

or resource allocation) can use to improve its system outcomes.

We argue that the above process has reached a point of dimin-

ishing returns. Our example from Section 2 shows a hypothetical

counter example where a very inaccurate learner produces better

systems results than an accurate learner. The key diference be-

tween those learners is that one learner is aware of the structure of

the systems problem (it is a constrained optimization problem in

the performance/power space) and is accurate only for the conigu-

rations that afect that structure.

We have shown how to build learners that produce better systems

results by acquiring knowledge of the systems problem. In themulti-

phase learning we propose, the irst phase inds the likely most

signiicant points for the systems problem, while the second phase

explicitly samples those points. This technique represents one way

to incorporate knowledge of the systems problem into training

the learner and it leads to empirically better outcomes, even for

state-of-the-art systems from the literature.

This work is just one example of how to incorporate more sys-

tems knowledge into training learners. While we have applied it to

the problem of meeting latency constraints with minimal energy,

we believe the ideas would translate to any system that has to bal-

ance multiple, competing constraints. We hope this work inspires

other systems researchers to consider techniques for incorporating

system knowledge into learning solutions.

Acknowledgments

We thank our anonymous shepherd for both patience and the de-

tailed feedback that greatly improved this inal version of the paper.

We also thank the anonymous reviewers for their helpful feedback

and Erik Altman for patiently serving as the point of contact be-

tween us and our shepherd. This research is supported by NSF

(CCF-1439156, CNS-1526304, CCF-1823032, CNS-1764039). Addi-

tional support comes from the Proteus project under the DARPA

BRASS program and a DOE Early Career award.

REFERENCES
[1] Jason Ansel, Maciej Pacula, Yee Lok Wong, Cy Chan, Marek Olszewski, Una-

May O’Reilly, and Saman Amarasinghe. 2012. Siblingrivalry: online autotuning
through local competitions. In CASES.

[2] David Arthur and Sergei Vassilvitskii. 2007. K-means++: The Advantages of Care-
ful Seeding. In Proceedings of the Eighteenth Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA ’07). Society for Industrial and Applied Mathematics,
Philadelphia, PA, USA, 1027ś1035. http://dl.acm.org/citation.cfm?id=1283383.
1283494

[3] L.A Barroso and U. Holzle. 2007. The Case for Energy-Proportional Computing.
Computer 40, 12 (Dec 2007), 33ś37. https://doi.org/10.1109/MC.2007.443

[4] R. M. Bell, Y. Koren, and C. Volinsky. 2008. The BellKor 2008 solution to the Netlix
Prize. Technical Report. ATandT Labs.

[5] C. Bienia, S. Kumar, J. P. Singh, and K. Li. 2008. The PARSEC Benchmark Suite:
Characterization and Architectural Implications. In PACT.

[6] Ramazan Bitirgen, Engin Ipek, and Jose F. Martinez. 2008. Coordinated man-
agement of multiple interacting resources in chip multiprocessors: A machine
learning approach. In MICRO.

[7] J. Cai, E. Candès, and Z. Shen. 2010. A Singular Value Thresholding Algorithm
for Matrix Completion. SIAM Journal on Optimization 20, 4 (2010), 1956ś1982.
https://doi.org/10.1137/080738970

[8] Emmanuel J Candès and Benjamin Recht. 2009. Exact matrix completion via
convex optimization. Foundations of Computational mathematics 9, 6 (2009), 717.

[9] Aaron Carroll and Gernot Heiser. 2013. Mobile Multicores: Use Them or Waste
Them. In Proceedings of the Workshop on Power-Aware Computing and Systems
(HotPower ’13). ACM, New York, NY, USA, Article 12, 5 pages. https://doi.org/10.
1145/2525526.2525850

[10] Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, JeremyW. Sheafer, Sang-
Ha Lee, and Kevin Skadron. 2009. Rodinia: A Benchmark Suite for Heterogeneous
Computing. In IISWC.

[11] Chi-Ou Chen, Ye-Qi Zhuo, Chao-Chun Yeh, Che-Min Lin, and Shih-Wei Liao.
2015. Machine Learning-Based Coniguration Parameter Tuning on Hadoop
System. In BigData Congress.

[12] Jian Chen and Lizy Kurian John. 2011. Predictive coordination of multiple on-chip
resources for chip multiprocessors. In ICS.

[13] Jian Chen, Lizy Kurian John, and Dimitris Kaseridis. 2011. Modeling Program
Resource Demand Using Inherent Program Characteristics. SIGMETRICS Perform.
Eval. Rev. 39, 1 (June 2011), 1ś12.

[14] Seungryul Choi and Donald Yeung. 2006. Learning-Based SMT Processor Re-
source Distribution via Hill-Climbing. In ISCA.

[15] Ryan Cochran, Can Hankendi, Ayse K. Coskun, and Sherief Reda. 2011. Pack &
Cap: adaptive DVFS and thread packing under power caps. In MICRO.

[16] Chris Cummins, Pavlos Petoumenos, Zheng Wang, and Hugh Leather. 2017.
Synthesizing benchmarks for predictive modeling. In Proceedings of the 2017
International Symposium on Code Generation and Optimization, CGO 2017, Austin,
TX, USA, February 4-8, 2017. 86ś99.

[17] Christina Delimitrou and Christos Kozyrakis. 2013. Paragon: QoS-aware Sched-
uling for Heterogeneous Datacenters. In ASPLOS.

[18] Christina Delimitrou and Christos Kozyrakis. 2014. Quasar: Resource-eicient
and QoS-aware Cluster Management. In ASPLOS.

[19] Zhaoxia Deng, Lunkai Zhang, Nikita Mishra, Henry Hofmann, and Fred Chong.
2017. Memory Cocktail Therapy: A General Learning-Based Framework to
Optimize Dynamic Tradeofs in NVM. In MICRO.

[20] N.R. Draper and H. Smith. 1998. Applied regression analysis. Number v. 1 in Wiley
series in probability and statistics: Texts and references section. Wiley.

[21] Christophe Dubach, Timothy M. Jones, Edwin V. Bonilla, and Michael F. P.
O’Boyle. 2010. A Predictive Model for Dynamic Microarchitectural Adaptiv-
ity Control. In MICRO.

[22] Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. 1996. A Density-
based Algorithm for Discovering Clusters a Density-based Algorithm for Discov-
ering Clusters in Large Spatial Databases with Noise. In Proceedings of the Second
International Conference on Knowledge Discovery and Data Mining (KDD’96).
AAAI Press, 226ś231. http://dl.acm.org/citation.cfm?id=3001460.3001507

[23] Xiaobo Fan, Wolf-Dietrich Weber, and Luiz Andre Barroso. 2007. Power pro-
visioning for a warehouse-sized computer. In Proceedings of the 34th annual

http://dl.acm.org/citation.cfm?id=1283383.1283494
http://dl.acm.org/citation.cfm?id=1283383.1283494
https://doi.org/10.1109/MC.2007.443
https://doi.org/10.1137/080738970
https://doi.org/10.1145/2525526.2525850
https://doi.org/10.1145/2525526.2525850
http://dl.acm.org/citation.cfm?id=3001460.3001507

ISCA ’19, June 22ś26, 2019, Phoenix, AZ, USA Yi Ding, Nikita Mishra, and Henry Hofmann

international symposium on Computer architecture (ISCA ’07). ACM, New York,
NY, USA, 13ś23. https://doi.org/10.1145/1250662.1250665

[24] Andrei Frumusanu. 2018. Improving the Exynos 9810 Galaxy S9: Part 2 - Catching
Up With the Snapdragon. AnandTech (April 2018). https://www.anandtech.com/
show/12620/improving-the-exynos-9810-galaxy-s9-part-2

[25] Archana Ganapathi, Kaushik Datta, Armando Fox, and David Patterson. 2009. A
case for machine learning to optimize multicore performance. In First USENIX
Workshop on Hot Topics in Parallelism (HotParŠ09).

[26] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2014. Generative adversarial
nets. In Advances in neural information processing systems. 2672ś2680.

[27] Shuhang Gu, Qi Xie, Deyu Meng, Wangmeng Zuo, Xiangchu Feng, and Lei Zhang.
2017. Weighted Nuclear Norm Minimization and Its Applications to Low Level
Vision. Int. J. Comput. Vision 121, 2 (Jan. 2017), 183ś208.

[28] Maya R. Gupta and Yihua Chen. 2011. Theory and Use of the EM Algorithm.
Found. Trends Signal Process. 4, 3 (March 2011), 223ś296.

[29] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and R. B. Brown.
2001. MiBench: A Free, Commercially Representative Embedded Benchmark
Suite. In Proceedings of the Workload Characterization, 2001. WWC-4. 2001 IEEE
International Workshop (WWC ’01). IEEE Computer Society, Washington, DC,
USA, 3ś14. https://doi.org/10.1109/WWC.2001.15

[30] Urs Hoelzle and Luiz Andre Barroso. 2009. The Datacenter as a Computer: An
Introduction to the Design of Warehouse-Scale Machines (1st ed.). Morgan and
Claypool Publishers.

[31] Henry Hofmann. 2015. JouleGuard: energy guarantees for approximate applica-
tions. In SOSP.

[32] Connor Imes, David H. K. Kim, Martina Maggio, and Henry Hofmann. 2015.
POET: A Portable Approach to Minimizing Energy Under Soft Real-time Con-
straints. In RTAS.

[33] E. Ipek, O. Mutlu, J. F. MartŠnez, and R. Caruana. 2008. Self-Optimizing Memory
Controllers: A Reinforcement Learning Approach. In ISCA.

[34] Syed Muhammad Zeeshan Iqbal, Yuchen Liang, and Hakan Grahn. 2010.
ParMiBench - An Open-Source Benchmark for Embedded Multiprocessor Sys-
tems. IEEE Comput. Archit. Lett. 9, 2 (July 2010).

[35] Tony Jebara. 2003. Machine Learning: Discriminative and Generative (Kluwer
International Series in Engineering and Computer Science). Kluwer Academic
Publishers, Norwell, MA, USA.

[36] Raghunandan H Keshavan, Andrea Montanari, and Sewoong Oh. 2010. Matrix
completion from noisy entries. Journal of Machine Learning Research 11, Jul
(2010), 2057ś2078.

[37] David H. K. Kim, Connor Imes, and Henry Hofmann. 2015. Racing and Pacing
to Idle: Theoretical and Empirical Analysis of Energy Optimization Heuristics.
In CPSNA.

[38] Yehuda Koren, Robert Bell, and Chris Volinsky. 2009. Matrix Factorization
Techniques for Recommender Systems. Computer 42, 8 (Aug. 2009), 30ś37.
https://doi.org/10.1109/MC.2009.263

[39] B.C. Lee, J. Collins, Hong Wang, and D. Brooks. 2008. CPR: Composable perfor-
mance regression for scalable multiprocessor models. In MICRO.

[40] Benjamin C. Lee and David M. Brooks. 2006. Accurate and Eicient Regression
Modeling for Microarchitectural Performance and Power Prediction. In ASPLOS.

[41] Benjamin C. Lee and David M. Brooks. 2010. Applied inference: Case studies in
microarchitectural design. TACO 7, 2 (2010), 8:1ś8:37. https://doi.org/10.1145/
1839667.1839670

[42] Benjamin C. Lee, David M. Brooks, Bronis R. de Supinski, Martin Schulz, Karan
Singh, and Sally A. McKee. 2007. Methods of inference and learning for perfor-
mance modeling of parallel applications. In Proceedings of the 12th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, PPOPP 2007, San
Jose, California, USA, March 14-17, 2007. 249ś258.

[43] J. Li and J.F. Martinez. 2006. Dynamic power-performance adaptation of parallel
computation on chip multiprocessors. In HPCA.

[44] J. F. Martinez and E. Ipek. 2009. Dynamic Multicore Resource Management:
A Machine Learning Approach. IEEE Micro 29, 5 (Sept 2009), 8ś17. https:
//doi.org/10.1109/MM.2009.77

[45] Nikita Mishra, Connor Imes, John D. Laferty, and Henry Hofmann. 2018.
CALOREE: Learning Control for Predictable Latency and Low Energy. In ASP-
LOS.

[46] Nikita Mishra, John D. Laferty, and Henry Hofmann. 2017. ESP: A Machine
Learning Approach to Predicting Application Interference. In 2017 IEEE Interna-
tional Conference on Autonomic Computing, ICAC 2017, Columbus, OH, USA, July
17-21, 2017. 125ś134.

[47] Nikita Mishra, Huazhe Zhang, John D. Laferty, and Henry Hofmann. 2015. A
Probabilistic Graphical Model-based Approach for Minimizing Energy Under
Performance Constraints. In ASPLOS.

[48] R. Narayanan, B. Ozisikyilmaz, J. Zambreno, G. Memik, and A. Choudhary. 2006.
MineBench: A Benchmark Suite for Data Mining Workloads. In IISWC.

[49] Adam J. Oliner, Anand P. Iyer, Ion Stoica, Eemil Lagerspetz, and Sasu Tarkoma.
2013. Carat: Collaborative Energy Diagnosis for Mobile Devices. In Proceedings
of the 11th ACM Conference on Embedded Networked Sensor Systems (SenSys ’13).
ACM, New York, NY, USA, Article 10, 14 pages. https://doi.org/10.1145/2517351.
2517354

[50] Paula Petrica, Adam M. Izraelevitz, David H. Albonesi, and Christine A. Shoe-
maker. 2013. Flicker: A Dynamically Adaptive Architecture for Power Limited
Multicore Systems. In ISCA.

[51] Dmitry Ponomarev, Gurhan Kucuk, and Kanad Ghose. 2001. Reducing Power
Requirements of Instruction Scheduling Through Dynamic Allocation of Multiple
Datapath Resources. In MICRO.

[52] David C. Snowdon, Etienne Le Sueur, Stefan M. Petters, and Gernot Heiser. 2009.
Koala: A Platform for OS-level Power Management. In EuroSys.

[53] Srinath Sridharan, Gagan Gupta, and Gurindar S. Sohi. 2013. Holistic Run-time
Parallelism Management for Time and Energy Eiciency. In ICS.

[54] G. Tesauro. 2007. Reinforcement Learning in Autonomic Computing: AManifesto
and Case Studies. IEEE Internet Computing 11 (2007). Issue 1.

[55] Erik Tomusk, Christophe Dubach, and Michael F. P. O’Boyle. 2016. Four Metrics
to Evaluate Heterogeneous Multicores. TACO 12, 4 (2016), 37:1ś37:25. https:
//doi.org/10.1145/2829950

[56] Erik Tomusk, Christophe Dubach, and Michael F. P. O’Boyle. 2016. Selecting
Heterogeneous Cores for Diversity. TACO 13, 4 (2016), 49:1ś49:25. https:
//doi.org/10.1145/3014165

[57] Dana Van Aken, Andrew Pavlo, Geofrey J. Gordon, and Bohan Zhang. 2017.
Automatic Database Management System Tuning Through Large-scale Machine
Learning. In SIGMOD.

[58] Kenzo Van Craeynest, Aamer Jaleel, Lieven Eeckhout, Paolo Narvaez, and Joel
Emer. 2012. Scheduling Heterogeneous Multi-cores Through Performance Impact
Estimation (PIE). In Proceedings of the 39th Annual International Symposium on
Computer Architecture (ISCA ’12). IEEE Computer Society, Washington, DC, USA,
213ś224. http://dl.acm.org/citation.cfm?id=2337159.2337184

[59] Jonathan A. Winter, David H. Albonesi, and Christine A. Shoemaker. 2010. Scal-
able thread scheduling and global power management for heterogeneous many-
core architectures. In PACT.

[60] Weidan Wu and Benjamin C Lee. 2012. Inferred models for dynamic and
sparse hardware-software spaces. InMicroarchitecture (MICRO), 2012 45th Annual
IEEE/ACM International Symposium on. IEEE, 413ś424.

[61] Joshua J. Yi, David J. Lilja, and Douglas M. Hawkins. 2003. A Statistically Rigorous
Approach for Improving Simulation Methodology. In HPCA.

[62] Nezih Yigitbasi, Theodore L Willke, Guangdeng Liao, and Dick Epema. 2013.
Towards machine learning-based auto-tuning of mapreduce. In MASCOTS.

[63] Huazhe Zhang and Henry Hofmann. 2016. Maximizing Performance Under a
Power Cap: A Comparison of Hardware, Software, and Hybrid Techniques. In
ASPLOS.

[64] Xiao Zhang, Rongrong Zhong, Sandhya Dwarkadas, and Kai Shen. 2012. A
Flexible Framework for Throttling-Enabled Multicore Management (TEMM). In
ICPP.

[65] Yanqi Zhou, Henry Hofmann, and David Wentzlaf. 2016. CASH: Supporting
IaaS Customers with a Sub-core Conigurable Architecture. In ISCA.

[66] Yuqing Zhu, Jianxun Liu, Mengying Guo, Yungang Bao, Wenlong Ma, Zhuoyue
Liu, Kunpeng Song, and Yingchun Yang. 2017. BestConig: tapping the perfor-
mance potential of systems via automatic coniguration tuning. In SoCC.

[67] Yuhao Zhu and Vijay Janapa Reddi. 2013. High-performance and energy-eicient
mobile web browsing on big/little systems. In HPCA.

https://doi.org/10.1145/1250662.1250665
https://www.anandtech.com/show/12620/improving-the-exynos-9810-galaxy-s9-part-2
https://www.anandtech.com/show/12620/improving-the-exynos-9810-galaxy-s9-part-2
https://doi.org/10.1109/WWC.2001.15
https://doi.org/10.1109/MC.2009.263
https://doi.org/10.1145/1839667.1839670
https://doi.org/10.1145/1839667.1839670
https://doi.org/10.1109/MM.2009.77
https://doi.org/10.1109/MM.2009.77
https://doi.org/10.1145/2517351.2517354
https://doi.org/10.1145/2517351.2517354
https://doi.org/10.1145/2829950
https://doi.org/10.1145/2829950
https://doi.org/10.1145/3014165
https://doi.org/10.1145/3014165
http://dl.acm.org/citation.cfm?id=2337159.2337184

	Abstract
	1 Introduction
	2 Related Work and Motivation
	2.1 ML/AI-based Systems Management
	2.2 Motivational Example

	3 Learning by Example
	4 Generating Data for Accuracy
	4.1 GMM Overview
	4.2 Generating Data with a GMM
	4.3 Discussion and Limitations

	5 Multi-phase Sampling
	6 Experimental Setup
	6.1 Systems
	6.2 Applications
	6.3 Application and System Diversity
	6.4 Learning Models Studied
	6.5 Evaluation Metrics
	6.6 Evaluation Methodology

	7 Evaluation
	7.1 Summary Results
	7.2 Detailed Accuracy Results
	7.3 Detailed Energy Results
	7.4 Accuracy and Energy for Best Learners
	7.5 Sensitivity to Sample Size
	7.6 Overhead
	7.7 Discussion

	8 Conclusion
	References

