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Abstract—Large language models (LLMs) have been widely
used for their ability to handle complex natural language tasks
with high accuracy. The lifecycle of LLMs development and
deployment encompasses both training and serving phases. Al-
though training takes months and consumes significant amounts
of energy, recent studies show that the energy consumption of
LLM serving has now surpassed that of training, leading to
significant environmental impacts, especially in terms of carbon
footprints. While much prior work has focused on improving
LLM performance, the specific challenge of reducing the carbon
footprint of LLM serving has been largely overlooked. This
paper identifies key challenges and outlines research directions
for making LLM serving more sustainable, aiming to inspire
further environmentally responsible advancements in the field.

I. INTRODUCTION

Large language models (LLMs) have been widely adopted
due to their ability to perform complex natural language
processing tasks with high accuracy [1]. Models such as
OpenAI’s GPT-4, Google’s Gemini, and Meta’s LLaMA are
now integrated into applications ranging from chatbots to
data analytics. The LLM lifecycle involves both training
and serving. Although training takes months and consumes
significant amounts of energy, recent studies show that the
energy consumption of LLM serving has now surpassed that
of training, leading to significant environmental impacts, es-
pecially in terms of carbon footprints measured in CO2eq [2].

The carbon footprints of LLM serving are categorized into
embodied and operational. On one hand, the deployment of
LLM serving systems requires advanced hardware infrastruc-
ture such as GPUs and machine learning accelerators (e.g.,
TPUs). Previous studies have shown that the manufacturing
process of these high-performing hardware devices generates
significant embodied carbon footprints [3]. The key idea of
reducing embodied carbon is to extend hardware lifetimes
to amortize its embodied carbon over a longer period. On
the other hand, operational carbon footprints are generated
from the energy consumption required to run LLMs during
their serving phase. For example, serving a single prompt in
ChatGPT produces more than 4 grams of CO2eq [4], which is
over 20 times the operational carbon footprint of a web search
query [5]. Therefore, to effectively reduce the total carbon
footprints of LLM serving, we must consider both embodied
and operational carbon footprints holistically.

Fig. 1. An LLM serving example.

II. CHALLENGES

LLM serving differs significantly from traditional cloud
applications like microservices and serverless workloads. Un-
like these lightweight applications, LLM serving is highly
compute- and memory-intensive, requiring substantial com-
pute resources such as GPUs or TPUs due to the large scale
of models, which have billions of parameters. We summarize
the unique characteristics of LLM serving as follows.

1) High compute and memory intensity. Existing perfor-
mance optimization techniques for LLM serving highly rely on
the latest and most advanced hardware [6], as older hardware
often cannot meet the compute demands and latency SLOs of
LLM models. While reusing older hardware like legacy servers
and discarded smartphones can reduce carbon footprints for
lightweight microservices [7], [8], this approach does not
generalize to LLM serving, where high compute and memory
requirements make meeting latency SLOs challenging.

2) Two-phase execution. LLM serving involves two phases:
prefill and decoding [9]. In prefill, all input tokens are pro-
cessed in parallel to generate the first token, and the resulting
context is stored in a key-value (KV) cache. In decoding,
subsequent tokens are generated using the last token and the
KV cache. Figure 1 shows an example of LLM serving. The
prefill phase is compute-bound, while the decoding phase is
memory-bound, each with distinct latency SLOs, complicating
efforts to minimize carbon footprints.

Based on these characteristics, we list three main challenges
in minimizing the carbon footprints of LLM serving.

Limited understanding of tradeoffs between perfor-
mance and carbon. Unlike traditional cloud applications,
where performance is measured by a single metric like end-
to-end latency, LLM serving involves two distinct metrics:
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time to first token (prefill phase) and time to generate each
token (decoding phase). Each phase has its own latency SLOs,
compute and memory needs, and carbon footprints, making
the performance-carbon relationship unique. Furthermore, dif-
ferent optimization strategies affect the compute and memory
intensities of LLM components variably, posing the challenge
of understanding their performance and carbon impact across
different hardware and application-level configurations.

Conflict between high compute/memory requirements
and embodied carbon reduction. Reducing embodied car-
bon involves extending hardware lifetimes by reusing older
hardware. However, the trend of training larger models (e.g.,
Meta’s LLaMA 3 with 450 billion parameters) on advanced
GPUs and TPUs increases embodied carbon. Additionally,
the varying compute and memory demands of different LLM
components further complicate extending hardware lifetimes.

Unreliable carbon intensity forecasts. Serving LLMs in
low carbon intensity regions is complicated by the tradeoffs
between operational and embodied carbon. Hardware with low
embodied carbon may be located in a high carbon intensity
region. Performance and energy efficiency may decline when
shifting workloads between distant regions, not to mention re-
liability issues during network communication and data trans-
fers. Furthermore, carbon intensity forecasts are uncertain [10],
complicating the decision-making of resource allocation.

III. RESEARCH OPPORTUNITIES

To tackle the abovementioned challenges, we present several
research opportunities below.

Unified benchmarking. While the open source commu-
nity has begun developing performance optimization tools to
enable automatic performance and energy measurement of
LLM serving, more can be done to integrate sustainability by
incorporating carbon accounting methodologies and telemetry
into these tools. Additionally, since these tools are developed
by both academia and industry, their assumptions about LLM
models and library dependencies vary. To ensure fair com-
parisons, each LLM optimization tool should be evaluated
using consistent LLM models and libraries. Thus, it is crucial
to build a generalized benchmarking framework that bridges
different LLM optimization techniques with various models
and libraries, facilitating seamless integration and evaluation.

Reusing old GPUs. Heavy reliance on the latest GPUs to
improve LLM serving performance significantly raises em-
bodied carbon footprints. This trend encourages the industry
to discard under-performing and even mediocre-performing
GPUs before their actual lifetimes end, making it harder
to reduce embodied carbon. To address this, we must shift
away from the belief that only the newest GPUs can boost
performance. Instead, hardware, systems, and application co-
optimization is needed to simultaneously improve performance
and reduce embodied carbon. Additionally, reusing old GPUs
can potentially increase latency and energy consumption,
leading to higher operational carbon. Therefore, the tradeoffs
between embodied and operational carbon must be managed.

Embodied carbon from storage. Storage plays a critical
role in LLM serving, encompassing areas like model storage,
temporary storage for input data and preprocessing, KV-cache,
logging, monitoring, and postprocessing. While LLMCarbon
has explored the energy consumption of data storage and trans-
fer [11], the embodied carbon of storage has been overlooked.
The embodied carbon of storage becomes significant when
offloading techniques are used due to the insufficient memory
capacity of modern GPUs to handle LLMs with hundreds of
gigabytes in size. In these cases, embodied carbon comes not
just from memory and GPUs but also SSDs and HHDs. Recent
studies show that storage contributes 33% of operational and
61% of embodied carbon in Azure’s cloud [12], yet storage
emissions specific to LLMs remain under-explored.

Minimizing total carbon under uncertainties. Minimizing
the total carbon footprint of LLM serving involves several un-
certainties, including inaccurate performance and energy pro-
filing, unreliable performance and energy modeling, uncertain
embodied carbon accounting, unpredictable carbon intensity,
and inconsistent communications between servers. Therefore,
robust scheduling is needed for reliable lower carbon.
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