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Abstract— Electroencephalography (EEG) plays a crucial
role in brain-computer interfaces (BCIs) and neurological
diagnostics, but its real-world deployment faces challenges due
to noise artifacts, missing data, and high annotation costs.
We introduce SSL-SE-EEG, a framework that integrates Self-
Supervised Learning (SSL) with Squeeze-and-Excitation Net-
works (SE-Nets) to enhance feature extraction, improve noise
robustness, and reduce reliance on labeled data. Unlike con-
ventional EEG processing techniques, SSL-SE-EEG transforms
EEG signals into structured 2D image representations, suitable
for deep learning. Experimental validation on MindBigData,
TUH-AB, SEED-IV and BCI-IV datasets demonstrates state-
of-the-art accuracy (91% in MindBigData, 85% in TUH-
AB), making it well-suited for real-time BCI applications. By
enabling low-power, scalable EEG processing, SSL-SE-EEG
presents a promising solution for biomedical signal analysis,
neural engineering, and next-generation BCIs. The code is
available at https://github. com/roycmeghna/SSL_SE_
EEG_EMBC25.

Index Terms— EEG, Self-supervised learning, Squeeze and
Excitation Network, Power efficient BCI

I. INTRODUCTION

Electroencephalography (EEG) is a vital biopotential sig-
nal used to measure brain activity in applications such as
brain-computer interfaces, cognitive monitoring, and the di-
agnosis of neurological disorders [1]. Despite its importance,
real-world EEG applications face significant challenges due
to noise, motion artifacts, and incomplete data from missing
or corrupted channels, often resulting from electrode dis-
placement [2], [3].

The traditional EEG workflow is illustrated in Fig. 1(a).
It begins with data collection and labor-intensive labeling,
which is subject-specific, task-specific, and highly variable
across acquisition conditions. Subsequently, the collected
data is processed either manually by domain experts or
through automated methods. Automated approaches typi-
cally leverage machine learning (ML) techniques, which
can be broadly categorized into two groups. Traditional
ML techniques include artificial neural networks (ANN),
support vector machines (SVM), and principal component
analysis (PCA) [4]. More recently, deep learning architec-
tures, particularly convolutional neural networks (CNNs),
have shown superior performance, largely due to their ability
to effectively extract features from EEG signals [5].

While traditional ML techniques and most CNN-based
methods have demonstrated success in EEG processing,
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Fig. 1. (a) EEG workflow highlighting challenges in data labeling and
processing. (b) Trade-off between model accuracy and labeling cost across
ML paradigms, showing how SSL-SE-EEG achieves high performance with
reduced labeled data.

they predominantly rely on the supervised learning (SL)
paradigm, which requires extensive labeled datasets to un-
cover meaningful patterns [6]. This dependence on man-
val annotation renders data preparation expensive, time-
consuming, and subject to strict human research con-
straints [7], [8], [9]. Moreover, even with ample labeled
data, achieving robust generalization across subjects and
sessions remains a persistent and unresolved challenge [10].
Unsupervised learning, which operates solely on unlabeled
data, alleviates the burden of annotation but often struggles
to learn features that reliably separate signal from noise [1].
In response to these limitations, self-supervised learning
(SSL) has emerged as a promising middle ground. SSL
frameworks leverage large volumes of unlabeled data to learn
rich, transferable representations through carefully designed
pretext tasks, requiring only a small fraction of labeled data
for downstream fine-tuning [11]. As shown in Fig. 1(b), SSL
offers an attractive trade-off, achieving high performance
with substantially reduced labeling costs.

In this paper, we introduce SSL-SE-EEG, a novel frame-
work that combines SSL with CNNs and Squeeze-and-
Excitation Networks (SE-Nets) to enhance feature extrac-
tion and improve robustness to noise in EEG-based image
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Overview of the proposed SSL-SE-EEG pipeline, which consists of two steps. Step 1 involves preprocessing EEG signals into 2D image

representations. Step 2 integrates self-supervised learning with SE-Nets through a two-stage process: Stage 1 applies contrastive learning using a modified
encoder (BE+SE) and a projection head (PH) to maximize feature diversity; Stage 2 fine-tunes the network on a smaller labeled dataset for classification,

leveraging learned representations for robust inference.

representations. Our approach first transforms EEG signals
into structured 2D RGB image representations, preserving
critical temporal and amplitude information, thereby enabling
compatibility with CNN-based encoders and facilitating
diverse view generation for contrastive learning. SE-Nets
further refine feature learning by dynamically recalibrating
channel-wise responses, allowing the model to focus on the
most informative aspects of EEG signals. As highlighted in
Fig. 1(b), SSL-SE-EEG delivers high classification accuracy
while significantly minimizing reliance on labeled data.

We validate our framework across four public EEG
datasets, demonstrating strong generalization across subjects
and tasks. Additionally, we show that SE integration intro-
duces minimal power overhead, making SSL-SE-EEG par-
ticularly well-suited for deployment in low-power, wearable
EEG systems [12], [13], [14].

We summarize our main contributions as follows:

e SSL-SE-EEG Framework: We propose a novel frame-
work that integrates self-supervised learning with
Squeeze-and-Excitation Networks to enhance feature
extraction, improve generalization, and reduce depen-
dency on labeled EEG data.

« EEG Representation as 2D Images: We transform
EEG signals into 2D RGB image representations that
preserve temporal and amplitude characteristics, en-
abling effective feature learning through CNN.

o Accuracy and Energy Efficiency with SE-Nets: We
validate SSL-SE-EEG on multiple public EEG datasets,
achieving high classification accuracy while maintaining
lightweight SE-Net integration, ensuring suitability for
energy-efficient, wearable EEG applications.

II. RELEVANT TOPICS TO UNDERSTAND
A. Self-Supervised Learning (SSL)

SSL is a machine learning paradigm in which models
are trained on unlabeled data using inherent structures or
generating supervisory signals through pretext tasks [11].
In summary, SSL methods typically design auxiliary tasks,
such as predicting missing segments, contrasting different
views of the same data, or reconstructing inputs, to force the

model to learn valuable representations without relying on
manual annotations [8]. Recent advances include techniques
such as contrastive learning (e.g. SimCLR [15], MoCo [16])
and masked autoencoders, which have significantly improved
performance in areas such as computer vision[17], [18], [19]
and natural language processing [20], [21], [22]. SSL has
been used in biomedical datasets like knee MRI, SARS-
COV-CT, and TissueMNIST and has shown promising re-
sults [23], [24], [25]. However, studies on EEG and SSL are
limited [26], [27].

B. Squeeze and Excitation Network (SE-Net)

SE-Net is a neural network architecture designed to im-
prove feature representations by explicitly modeling the in-
terdependencies between channels [28]. It works by ”squeez-
ing” global spatial information into a channel descriptor
through a global pooling layer and then “exciting” or re-
calibrating these channels via a gating mechanism with fully
connected layers, allowing the network to focus on the most
informative features. Recent work has integrated SE-Net
modules into various architectures to improve performance
in tasks such as image classification, object detection, and
semantic segmentation [29], [30], [31]. Moreover, its adapt-
ability has shown promise in the biomedical domains, where
channel-wise recalibration can help to capture better and
emphasize critical information [32], [33], [34], [35].

Despite their success in other domains, SE-Nets have
been limited in use in EEG analysis. This work integrates
SSL and SE-Nets to create a label-independent framework
that adapts to missing channels and efficiently learns the
appropriate features of EEG. The following section details
our methodology, outlining how SSL and SE-Nets improve
feature learning and generalization in EEG processing.

III. PROPOSED FRAMEWORK - SSL-SE-EEG

To reduce the reliance on labeled data while enhancing
robustness and generalization, we introduce Self-Supervised
Learning with Squeeze-and-Excitation Networks for EEG
SSL-SE-EEG. This framework enables robust feature extrac-
tion from unlabeled EEG signals while dynamically enhanc-
ing relevant patterns and suppressing noise. Additionally, it
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Tlustration of EEG-to-2D image conversion: (a) Raw EEG signals are segmented into 2-second windows, where 50 ms temporal segments are

flattened into 1D columns to construct a 2D image. (b) Examples from TUH-AB and BCI-IV datasets demonstrate the effectiveness of this transformation

for CNN-based feature extraction and classification.

leverages a CNN-friendly 2D image representation of EEG
data, making it well-suited for deep learning architectures.
Fig. 2 outlines the workflow. It starts with Data Processing,
followed by the the modified SSL implementation with SE-
Nets. Each step is described below.

1) Data Processing: Raw EEG signals are time-series
waveforms that may not be directly compatible with many
deep learning architectures predominantly designed for
image-based inputs. To bridge this gap, we introduce a
procedure to transform EEG waveforms into a structured
2D image representation, preserving temporal and amplitude
information in a format that CNNs can effectively process.
The concept of transforming raw signal data into image
representations for CNN processing has been previously
explored in different contexts such as RF signal analysis [36],
and finds use here for EEG signals. The process is illustrated
in Fig. 3(a).

We begin by segmenting the raw EEG into 2-second
windows, ensuring that each generated image encapsulates
a fixed duration of EEG activity. Each 2-second window
is further divided into 50ms segments, where each segment
is flattened into a 1D vector, forming a single column in
the resulting 2D matrix. This results in a matrix with 100
columns (corresponding to the 100 segments of 50ms each),
while the number of rows depends on the sampling frequency
of the EEG signal. The sampling frequency of the EEG
in Fig. 3(a) is 125Hz. Each resulting 2D image, therefore,
represents precisely 2 seconds of EEG data, maintaining
both spatial and temporal continuity. To ensure compatibility
with standard CNN architectures, the 2D matrix is reshaped

into a 224x224x3 RGB image, making it a structured and
information-rich input format for feature extraction. Each
50ms segment vector is normalized to [0, 1] and mapped
to RGB channels using a perceptually uniform colormap
(“viridis” in Matplotlib). Low amplitudes are rendered as dark
blue, while high amplitudes are bright yellow. 256 discrete
color levels map EEG values to 8-bit RGB intensities.
Fig. 3(b) shows examples of raw EEG waveforms and the
corresponding 2D images for various classes in the BCI IV
and TUH datasets. These image representations reveal class-
specific distinctions more clearly than the raw waveforms
alone. By introducing this image-based representation as
input, we can use our SSL-SE-EEG framework to extract
meaningful features more effectively.

2) Modified SSL implementation with SE-Net: Our SSL-
SE-EEG framework is inspired by Simple Contrastive Learn-
ing (SimCLR), a widely adopted self-supervised learning
method [15] and comprises two main components: a pre-
training block and a validation block, as illustrated in Fig. 2.

a) Stage 1: Pretraining: In the pretraining stage, we
first augment each input image to different views of input
data. We transform our EEG data to generate multiple
distorted views of the same signal like Gaussian blur. Next,
we use a modified ResNet as the base encoder. Unlike
conventional ResNet architectures, we integrate Squeeze-
and-Excitation (SE) blocks after each convolutional layer. SE
blocks enhance feature learning by adaptively recalibrating
channel-wise representations. This mechanism selectively
emphasizes informative channels while suppressing less rel-
evant ones, a key advantage over standard convolutions that



treat all input channels uniformly.
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Fig. 4. Modified Base Encoder with SE-Net. SE-blocks enhance EEG
feature sensitivity via global pooling and fully connected layers.

Fig. 4 illustrates the SE block architecture, where each SE
block operates in three stages as follows:

o Squeeze: A global pooling operation aggregates in-
formation across the spatial dimensions, capturing the
overall feature distribution.

« Excitation: Two fully connected layers learn the relative
importance of each channel, highlighting discriminative
features.

« Recalibration: The learned channel weights rescale the
original feature maps, suppressing noise while enhanc-
ing relevant EEG signals.

By integrating SE blocks with SSL, the framework auto-
matically refines EEG representations, improving robustness
against sensor dropouts and signal artifacts.

Following the encoder, a projection head (implemented
as a multi-layer perceptron) maps features into a lower-
dimensional space. This step facilitates contrastive learning
by ensuring that different transformations of the same EEG
segment are mapped closer together, while representations of
distinct EEG segments are pushed apart.

The framework is trained using NT-Xent loss (Normal-
ized Temperature-Scaled Cross Entropy), a contrastive loss
function shown in Eq (1) [15]. This objective maximizes
similarity between augmented versions of the same EEG
signal while ensuring separation from other samples.

exp(sim(z;,z;)/7)

(D

Li,j = —IOg N
k)gl Lz exp(sim(z;, 2 )/ T)

where z; & z; denote latent embeddings of EEG samples,
sim is cosine similarity,7 is the temperature parameter and
N is the batch size

Through contrastive learning and channel-wise recalibra-
tion, SSL-SE-EEG enables noise-tolerant feature learning.
This approach significantly enhances model robustness and
improves classification performance on downstream EEG
tasks. By leveraging SSL pretrain, our framework effectively
learns discriminative EEG representations, even in scenarios
with limited labeled data.

b) Stage 2: Validation: After pretraining, is the valida-
tion phase, where the encoder’s weights remain frozen. The
learned feature representations are then used for classification
on a labeled EEG dataset. A classification head is added on
top of the frozen encoder and trained using categorical cross-
entropy loss to assess the model’s performance.

IV. EXPERIMENTAL SETUP

Using multiple public EEG datasets, we evaluate SSL-
SE-EEG on NVIDIA L40 GPUs. Data preprocessing was
performed using Python libraries such as Pandas, NumPy,
and OpenCV, while model training and evaluation were
conducted with TensorFlow. The model performance was
evaluated using standard evaluation metrics such as accu-
racy and F1 score and computed with Scikit-learn.
Accuracy measures the proportion of correctly predicted
samples, providing a general indicator of model performance.
However, in imbalanced datasets, accuracy alone may be
misleading. The F1 score, a harmonic mean of precision and
recall, offers a more reliable performance measure across all
classes, as shown in (Eq. (2)).

_ TP+TN
Accuracy = 751 rp TN TEN (22)
_ 2TP
F1= srpirpirn (2)

We use the following datasets:

1) MindBigData(MBD). This dataset comprises 2-
second EEG recordings collected from commercial
headsets (NeuroSky MindWave, Emotiv EPOC, In-
teraxon Muse, and Emotiv Insight). The participants
viewed and mentally processed the digits (0-9), form-
ing a 10-class classification task where each class
corresponds to a digit [37].

2) TUH EEG Abnormal Corpus (TUH-AB). This is
one of the most extensive publicly available clinical
EEG datasets. It contains manually labeled recordings,
leading to a two-class classification task in which the
classes represent normal and abnormal EEG patterns.
Each recording lasts approximately 20 minutes and is
captured from 21 EEG channels [38].

3) SEED-IV. This dataset comprises EEG recordings of
15 participants watching videos designed to evoke
emotions. The recordings are categorized into four
distinct emotions: happy, sad, neutral, and fear [39].

4) BCI-IV. This dataset includes EEG recordings from
healthy participants engaged in motor imagery tasks.
Data was continuously recorded using 59 channels
of an Ag/AgCl electrode cap, as subjects envisioned
moving their left hand, right hand, or foot, forming a
3-class classification task [40].



TABLE I
COMPARISON WITH STATE-OF-THE-ART METHODS ON MINDBIGDATA AND TUH-AB

Paper Preprocessing Dataset Architecture Accuracy (%)
SSL-SE-EEG (Ours) 2D Image Representation MindBigData SSL-SE-EEG 91
[41] Spectrogram MindBigData CNN 91
[42] Raw EEG (Time Series) MindBigData DWT + BIiLSTM 71
[43] Spectrogram MindBigData CNN 86
SSL-SE-EEG (Ours) 2D Image Representation of EEG TUH-AB SSL-SE-EEG 85.18
[44] Raw EEG (Time Series) TUH-AB 1D-CNN-RNN 82.27
[45] Raw EEG (Time Series) TUH-AB SSL 84.26
[46] Raw EEG (Time Series) TUH-AB LSTM + Attention 74
V. EVALUATION AND RESULTS Accuracy Plot using SSL-SE-EEG
In this section, we evaluate our proposed framework SSL- 100 Pretrain Data: MBD Pretrain Data: TUH-AB
SE-EEG to address the following: -
. 89.24
1) Performance of SSL-SE-EEG: How accurately does 80 85.18 8643
the framework classify EEG signals on public datasets? s
2) Accuracy benefit of SE-Net: How does incorporating P
SE-Net enhance feature representation and improve < a0
model performance? g
3) Impact on Power Consumption with SE-Net: Does 20
including SE-Net significantly impact power consump-
tion, and how does this affect the feasibility of ultra- 0
- ?
low-power wearable EEG systems MBD TUH-AB MED TUH-AB

This section is divided into three parts, each addressing one
of the above questions and offering an analysis of the results
and insights gained.

A. Prediction Accuracy of SSL-SE-EEG

We evaluate the performance of our proposed framework,
SSL-SE-EEG, using a two-phase approach: pretraining fol-
lowed by downstream fine-tuning, as described in Section III.
We conduct experiments on two distinct EEG datasets: MBD
[37], which is imbalanced with 11 classes, and TUH-AB
[38], which is balanced with three classes, introduced in
Section IV.

Experiment 1: Pretraining on MBD. We pretrained
SSL-SE-EEG on 50,000 images from the imbalanced MBD
dataset for 50 epochs, then fine-tuned it on two tasks: (1) an
unseen 2,500-image subset from MBD, and (2) 2,500 images
from TUH-AB. The model achieved 91.12% and 89.24%
accuracy, respectively, demonstrating robust feature learning
from imbalanced data and strong cross-dataset generaliza-
tion.

Experiment 2: Pretraining on TUH-AB. Next, we
pretrained on 50,000 images from the balanced TUH-AB
dataset, then fine-tuned the model on an unseen subset
of 2,500 TUH-AB images and 2,500 MBD images. This
approach yielded slightly lower accuracy: 86.43% on TUH-
AB and 85.18% on MBD, suggesting that despite good
performance, further adaptation is needed to more effectively
address class imbalance.

Insights. These experiments reveal two key insights. First,
SSL-SE-EEG generalizes well across EEG datasets with
varying class distributions, confirming the robustness and
transferability of its learned representations. Second, even
when fine-tuned on limited data, the framework achieves

(unseen subset) (unseen subset)

MBD: MindBigData Dataset ; TUH-AB: Temple University Hospital — Abnormal Dataset
Fig. 5. Generalization performance of SSL-SE-EEG across datasets. The
model is pretrained on MBD or TUH-AB and tested on unseen subsets,
showing strong cross-dataset transfer with minimal accuracy drop.

performance comparable to—or slightly better than—state-
of-the-art methods, as shown in Table I. These findings
underscore the efficiency and broad applicability of SSL-SE-
EEG in EEG analysis tasks.

B. Accuracy benefit of SE-Net

To assess the benefit of incorporating the SE module
within SSL-SE-EEG, we performed experiments on four
public EEG datasets. MindBigData [37], BCI IV [40], SEED
IV [39], and TUH-AB [38]. We used a 80%/20% split for
pre-training and downstream validation for each data set,
respectively. To ensure a fair comparison, all models were
pre-trained for 10 epochs using the 2D image representation
described in Section III, and performance was evaluated
using accuracy and F1 score (Equations 2(a) and (b)).

Table II compares models with and without the SE module
under both SSL-pretrained and SL conditions. The integra-
tion of the SE module consistently boosts performance across
all datasets. For example, on the MBD imbalanced data set,
the SSL-pretrained model accuracy improved from 71% to
84%, and its F1 score increased from 0.64 to 0.92 with SE.
Similar improvements were observed in the balanced BCI IV
and TUH-AB datasets and the imbalanced SEED IV datasets.

Insights. Performance gains can be attributed to the SE
module’s ability to dynamically recalibrate channel-wise
feature responses, effectively allowing the network to focus
on the most informative and discriminative features. On



TABLE I
COMPARISON OF CLASSIFICATION PERFORMANCE WITH AND WITHOUT SE USING BOTH SUPERVISED AND SSL METHODS.

Dataset Type # Classes  Without SE - Supervised = With SE - Supervised Without SE - SSL.  With SE - SSL.
Acce (%) F1 Acce (%) F1 Acc (%) F1 Acc (%) F1
MindBigData  Imbalanced 11 57 0.45 72 0.69 71 0.64 84 0.92
BCI IV Balanced 3 55 0.53 62 0.61 64 0.64 72 0.76
SEED 1V Imbalanced 4 68 0.65 78 0.70 73 0.72 83 0.78
TUH-AB Balanced 2 62 0.60 70 0.69 68 0.67 75 0.75

Power Overhead of SSL & SE-Net to their underlying computational methodology rather than

the SE module itself. In SL, each sample is processed once

With SE 40.95  through a single ResNet-based CNN, whereas SSL processes

SSL Pretrained . multipl§ augmented views of the same image (see Fig 2),

Without SE 40.79 increasing the number of forward passes and computations

per sample. As a result, the same SE module causes a

' With SE a0.92 relatively larger increase in power consumption in SSL due

Supervised to the higher number of computation per input.

(NoSst) Without SE 20.86 Insights. From a broader perspective, the minor increase

' in power consumption and runtime compared to non-SE

Estimated GPU Power Consumption (W) implementations suggests that SE-Nets introduce minimal

Method Time (ms) power overhead while e.:nhancmg. efficiency. In fact, SE-Nets

- improve feature extraction and yield more robust representa-
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e tions, leading to more accurate predictions and better gener

(Supervised) Without SE 14.65 alization. When deployed on ML-optimized hardware, such

SSL Pretrained With SE 15.81 as [47], which operates at an efficiency of 0.3-2.6 TOPS/W,

Without SE 15.75 our proposed SSL-SE-EEG framework would consume as

Fig. 6. GPU power and inference time comparison for SSL-SE-EEG. SE-
Net slightly increases power (<0.4%) and inference time (<Ims) while
enhancing feature extraction.

imbalanced datasets like MindBigData and SEED 1V, where
minority classes are often underrepresented, this channel
reweighting leads to more balanced attention across classes,
thereby improving both accuracy and F1 score. In contrast,
balanced datasets such as BCI IV and TUH-AB benefit from
the SE module through enhanced feature extraction and noise
suppression, which results in more robust classification even
under varying conditions. These improvements are evident
regardless of whether SSL pre-training is used, underscoring
the broad applicability of the SE module and its crucial role
in enhancing EEG signal analysis.

C. Impact on Power Consumption by incorporating SE-Net

Next, we examine how adding the SE module affects
GPU power consumption and energy use. We evaluated
one datapoint from the TUH-AB dataset on one L40 GPU
and estimated power using NVIDIA’s NVML library. Fig.
6 illustrates the average GPU power consumption and total
energy use under two learning paradigms: SSL pre-trained
and SL, comparing setups with and without SE-Net.

In the SL setup, adding SE-Nets leads to a 0.15% increase
in average GPU power. When SSL pretraining is used, adding
SE raises the average GPU power by 0.4%. This shows that
the addition of SE-Nets introduces a slight increase in power,
attributed to the lightweight nature of global average pooling
and simple channel-wise recalibration. The difference in
power consumption between SL and SSL is mainly due

little as 2.96 mW in the best-case scenario and up to 25.67
mW in the worst case, which is well within the power
constraints of mobile and wearable devices. Furthermore,
quantization and dedicated hardware can further optimize
power efficiency while maintaining performance [12]. Future
work will explore these hardware-aware optimizations to
enhance the practicality of SSL-SE-EEG in real-world low-
power applications.

VI. CONCLUSION

This work introduces SSL-SE-EEG, a novel framework
that leverages SSL to reduce dependency on labeled data and
uses SE-Nets to enhance feature selection and noise suppres-
sion. Our approach achieves 91% accuracy in MindBigData
and 85.18% in TUH-AB. We also perform experiments to
demonstrate that SE-Net integration improves classification
by up to 15% public data sets while keeping power con-
sumption low (<0.4% compared to no SE-Net). These results
demonstrate that SSL-SE-EEG enables robust, scalable EEG-
based interfaces, making it well-suited for real-time cognitive
state monitoring, BCIs, and neurorehabilitation applications.
Future work will focus on further optimizing real-time de-
ployment for low-power wearable EEG systems.
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