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Beyond Climate Change:
A Holistic Framework for Evaluating the

Environmental Impact of Computing Systems

by Yi Ding, Yanran Wu, Tianyao Shi, and Inez Hua

An overview of three recent studies designed to evaluate large-scale computing’s
impacts on climate change, water, and biodiversity.
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Carbon Efficiency: The FUEL Framework
Carbon emissions remain a central concern in computing
sustainability. The FUEL (Functional Unit-based Evaluation
for LLMs) framework introduces Functional Units (FUs)—
tokens generated under specific performance and quality
constraints—as a standardized basis for comparing carbon
emissions across system configurations (see Figure 1).

Components of Carbon Emissions
•  Operational Carbon: Energy consumed during 

      inference, multiplied by grid carbon intensity.
•  Embodied Carbon: Manufacturing and packaging 

      emissions amortized over hardware lifetime.

Case Studies
We conducted three case studies that systematically 
compared LLM serving systems across three dimensions:
model size, quantization strategy, and hardware choice. 
Each case study offers actionable insights into designing
more sustainable AI infrastructures. For example, in evaluat-
ing hardware choices, we observed that newer accelerators
such as the Nvidia H100 GPU can deliver lower latency,9

yet these gains do not automatically translate into lower 
carbon emissions. The embodied carbon associated with
manufacturing advanced GPUs and their elevated opera-
tional power draw can offset efficiency improvements. By
contrast, when output quality and latency requirements are
satisfied, deploying LLMs on older GPUs such as the Nvidia
L4010 can yield lower carbon emissions per functional 
unit. Our finding highlights an important design trade-off:
maximizing performance may not align with minimizing
total carbon emission. 

Water Stress and Computing: 
The SCARF Framework
Water consumption in computing is often overlooked, yet it
is a critical sustainability metric. Data centers require large
amounts of water for cooling, and semiconductor fabrication
plants use ultra-pure water in manufacturing processes. The
SCARF (Stress-Corrected Assessment of Water Resource
Footprint) framework addresses this gap by introducing a

The rapid expansion of artificial intelligence (AI) is re-
shaping global infrastructure through significant investment
in computing hardware and software. For example, Nvidia’s
$100 billion investment in OpenAI aims to sustain the AI
boom and drive demand for its chips.1 Amazon is building 
a 1,200 acre, 2.2 gigawatt (GW) AI data center complex in
Indiana to support Anthropic, equipped with hundreds of
thousands of Trainium 2 chips. This supersized infrastructure
reflects a broader industry trend, with companies like Meta
and OpenAI also building GW scale data centers to meet
the computational demands of advanced AI models.2

Yet, these developments come with escalating environmental
impacts. The U.S. Department of Energy projects that data
centers could consume up to 12% of national electricity 
by 2028, with large language models (LLMs) driving much
of this growth.3 Studies show that larger AI models emit 
increasingly more climate changing gases per query;4

underscoring the urgent need for sustainability frameworks
that address AI’s environmental impacts.

Consider the 2.2 GW AI data center in Indiana: its carbon
emission stems from both operational energy use (electricity
for compute, cooling, and networking) and embodied 
emissions from manufacturing chips and construction 
materials. Reducing carbon through renewable energy or 
efficiency gains may, however, may inadvertently increase
water withdrawals for cooling or hydropower. Likewise, land
use change and infrastructure expansion can disrupt local
ecosystems, contributing to biodiversity loss. Hence, any 
sustainable computing strategy must jointly assess these 
dimensions rather than treat them in isolation.

This article presents an overview of three recent studies:
FUEL,5 SCARF,6 and FABRIC,7 that collectively enable 
holistic evaluation of computing’s impacts on climate change,
water, and biodiversity. These frameworks offer a multi-lay-
ered lens for environmental managers, policymakers, and
technologists seeking to mitigate the coupled environmental
impact of climate change, water scarcity and biodiversity loss
at the planetary scale.8

Figure 1. A standardized basis for comparison, such that the carbon emissions and climate change 
impact of model size, quantization, and hardware choice can be meaningfully compared. Adapted from
reference 5.
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low- to medium-water-stress regions, suggesting that siting
decisions already consider hydrological constraints. However,
SCARF further reveals that neither total water consumption
nor regional water stress alone provides an accurate picture
of water impact. In some cases, high water consumption in 
a medium stressed region can impose greater long-term im-
pacts than moderate consumption in a high stressed region.

Biodiversity Loss: The FABRIC Framework
Biodiversity is a critical planetary boundary, yet its connec-
tion to computing has remained largely unexplored. The
FABRIC (Fabrication-to-Grave Biodiversity Impact Calculator)
framework introduces two new metrics—Embodied Biodiver-
sity Index (EBI) and Operational Biodiversity Index (OBI)—to
quantify biodiversity impact across the lifecycle of computing
systems (see Figure 3).

Midpoint and Endpoint Metrics
FABRIC uses life cycle assessment (LCA) principles to 
evaluate three midpoint impacts:

•  Acidification Potential (AP): Emissions like sulfur 
      dioxide (SO2) and nitrogen oxides (NOx) lower the 
      pH of precipitation and surface water.

spatially and temporally aware method for evaluating water
impact.

Key Innovations
SCARF calculates an Adjusted Water Impact (AWI) by 
multiplying raw water consumption with a Water Stress 
Factor (WSF), which accounts for both geographic location
and temporal (including seasonal) water availability. This 
approach enables more accurate assessments of environ-
mental burden, especially in regions with fluctuating water
stress (see Figure 2).

Case Studies
We conducted three case studies to evaluate the environ-
mental impact of water consumption for LLM serving, data
centers, and semiconductor fabs. Each case study highlights
a distinct dimension of water impact, from model-level effi-
ciency to site-level resource management and upstream
manufacturing dependencies, illustrating how water sustain-
ability challenges propagate across the computing stack. In
our analysis of Google’s U.S. data centers,11 we quantified
their annual water consumption and local water stress 
exposure using geospatial and operational datasets. We found
that most of Google’s facilities are strategically located in

Figure 2. The framework considers direct and indirect water consumption, location, and time dependent
water stress factors to estimate the impact of water consumption. In contrast to climate changing gases, the
environmental impact of water consumption depends on the local surroundings. Adapted from reference 6.

Figure 3. Biodiversity impacts from computing are modeled with a cause-and-effect chain based on
stressors (emissions over the computing life cycle), and selected midpoint impacts that are aggregated
into the endpoint of biodiversity loss. Adapted from reference 7.
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•  Eutrophication Potential (EP): Excess nutrients lead 
      to oxygen-depleting algal blooms.

•  Freshwater Ecotoxicity Potential (FETP): Toxic 
      chemicals harm freshwater aquatic ecosystems.

These are converted into endpoint metrics expressed in
species • yr, representing the statistical loss of species per year.

Key Findings
We evaluated FABRIC on seven high performance comput-
ing (HPC) workloads across three computing platforms with
diverse hardware infrastructure. We discovered:

•  Manufacturing Dominates: Manufacturing 
      contributes 78–92% of midpoint impacts and 
      55–75% of endpoint biodiversity loss.

•  System-Level Analysis: Perlmutter, a petascale 
      supercomputer, has an annual OBI of 2.51×10⁻3

      species•yr, which ~60 greater than its annualized EBI.
•  Energy Mix Matters: Relocating Perlmutter to 

      hydro-rich Québec reduces its OBI by two orders of 
      magnitude compared to fossil-heavy grids.

Implications
FABRIC highlights the need to consider biodiversity 
alongside carbon and water in sustainable computing. It also
underscores the importance of clean energy and efficient
hardware reuse in minimizing ecological damage.

Integrated Insights for Environmental 
Management
The FUEL, SCARF, and FABRIC frameworks collectively offer
a multi-dimensional approach to evaluating the environmen-
tal impact of computing systems. Key takeaways include:

    1.  Context Matters: Environmental impact varies 
         significantly by location, time, and workload intensity. 
         Spatial and temporal awareness is essential.

    2.  Lifecycle Thinking: Embodied impacts from 
         manufacturing and end-of-life stages must be 
         considered alongside operational emissions.
    3.  Beyond Climate Change: Water stress and 
         biodiversity loss are equally critical and often more 
         regionally sensitive than carbon emissions.
    4.  Policy Levers: Discount rates, energy mix, and 
         infrastructure siting policies can dramatically alter 
         sustainability outcomes.
    5.  Technology Choices: Quantization, model size, 
         and hardware reuse offer practical pathways to 
         reduce environmental burden.

Recommendations for Practitioners
Environmental managers, sustainability officers, and system
architects in the computing sector can leverage the FUEL
(carbon), SCARF (water), and FABRIC (biodiversity) frame-
works in tandem to guide more comprehensive sustainability
strategies. When integrated, they enable multi-impact 
decision-making across the software–hardware-infrastructure
lifecycle. To translate these insights into practice:

•  Adopt Multi-Metric Evaluation: Use AWI, EBI, and 
      OBI to assess environmental impact holistically.

•  Incorporate Regional Data: Leverage tools like 
      Aqueduct 4.012,13 for water risk and eGRID14 for 
      regional carbon intensity to inform site selection and 
      workload scheduling. 

•  Promote Hardware Longevity: Extend the lifecycle 
      of computing devices to reduce embodied carbon and 
      biodiversity impact.

•  Advocate for Clean Energy: Transition to renewable-
      heavy grids to minimize operational emissions and 
      ecological harm.

•  Support Open Data and Standards: Encourage 
      transparency in sustainability reporting to enable 
      robust environmental assessments.

Be sure to visit
www.awma.org regularly 
for the latest important 
information from A&WMA.

http://www.awma.org
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Conclusion
As computing systems become integral to modern life, their
environmental footprint must be managed with the same
rigor applied to traditional industrial sectors. The FUEL,
SCARF, and FABRIC frameworks represent a new frontier in

environmental management—one that integrates considera-
tions about climate change, water, and biodiversity into a
unified sustainability strategy. By adopting these tools and 
insights, stakeholders can build a more resilient, equitable,
and ecologically sound digital future. em
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