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Abstract
Mental health issues among college students have reached critical
levels, affecting both academic performance and overall wellbeing.
Predicting and understanding mental health status among college
students is challenging due to three key barriers: the lack of large-
scale longitudinal datasets, the prevalence of black-box machine
learning models that offer little transparency, and a reliance on
population-level analysis rather than personalized understanding.

To tackle these challenges, this paper presents I-HOPE, the first
Interpretable Hierarchical mOdel for Personalized mEntal health
prediction. I-HOPE is a two-stage hierarchical model that connects
raw behavioral features to mental health status through five defined
behavioral categories as interaction labels. We evaluate I-HOPE on
the College Experience Study, the longest longitudinal mobile sens-
ing dataset. This dataset spans five years and captures data from
both pre-pandemic periods and the COVID-19 pandemic. I-HOPE
achieves a prediction accuracy of 91%, significantly surpassing the
60-70% accuracy of baseline methods. In addition, I-HOPE distills
complex patterns into interpretable and individualized insights,
enabling the future development of tailored interventions and im-
proving mental health support.

CCS Concepts
•Computingmethodologies→Machine learning approaches;
•Human-centered computing→ Empirical studies in ubiqui-
tous and mobile computing; • Applied computing→ Health
informatics.
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1 Introduction
Mental health issues among college students have escalated to crit-
ical levels, significantly affecting academic performance, social in-
teractions, and overall wellbeing [4, 8, 9, 16]. The American College
Health Association reports that 40% of students experience severe
depression that disrupts daily functioning, while 60% encounter
overwhelming anxiety during the 2020–2021 school year [1]. Fur-
thermore, approximately 76% of college students report moderate
to severe psychological distress, with anxiety and depression being
the most prevalent diagnoses [6]. Despite increasing awareness,
timely access to support remains limited for many students due to
stigma, resource constraints, and challenges in detecting those at
risk [36]. This situation underscores the pressing need for effective
and scalable solutions to improve the understanding and prediction
of mental health outcomes.

The complexity of predicting and understanding mental health
status among college students arises from three primary factors.
First, a comprehensive analysis requires a large-scale, longitudinal
dataset that collects data through passive sensing over an extended
period rather than relying on short-term data collection conducted
in a lab setting. Second, although machine learning has been used
to address mental health issues, many existing models utilize black-
box algorithms that lack transparency and interpretability [29, 33,
37]. Third, most machine learning approaches yield aggregated
insights at the population level that fail to provide individualized
understanding, which is essential for personalized interventions
and mental health support [5, 10].

In this paper, we address these challenges through a paradigm
shift towards methodologies that not only leverage an extensive
dataset but also prioritize individual variability in mental health
prediction. In particular, we leverage the College Experience Study
(CES) dataset [26], the longest longitudinal mobile sensing dataset
for college student behaviors, released by Dartmouth College in
October 2024. This dataset is especially valuable for our study be-
cause it covers a five-year period that includes pre-pandemic years,
the COVID-19 pandemic, and the gradual return to normalcy as
the pandemic receded. By analyzing behavioral patterns and men-
tal health metrics over different time periods, we can investigate
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insights into the pandemic’s impact on mental health and the role
of behavior in shaping it.

We present I-HOPE, the first Interpretable Hierarchical mOdel
for Personalized mEntal health prediction. I-HOPE is a two-stage
hierarchical model designed to accurately predict mental health
status while offering deep insights into the features contributing
to various mental health conditions. Specifically, we define five
interaction labels: Leisure, Me Time, Phone Time, Sleep, and Social
Time, which categorize different daily behaviors. The key insight
of I-HOPE is to connect raw behavioral features to mental health
status through an intermediate layer consisting of these five in-
teraction labels. These labels act as compact representations of
complex behaviors, simplifying the input space while preserving
data richness. Furthermore, I-HOPE facilitates the identification
of an individual’s social type and emphasizes the interactions that
most significantly impact their mental health.

We compare I-HOPE with baseline methods that lack personal-
ized predictions or two-stage feature mappings. I-HOPE achieves
an overall prediction accuracy of 91%, significantly surpassing the
60-70% accuracy of baseline methods. I-HOPE simplifies complex
patterns into interpretable and personalized insights by mapping
behavioral features into interaction labels. For instance, a good
7-hour sleep is linked to better mental health outcomes, while
poor sleep correlates with increased anxiety and depression. Walk-
ing serves as a stress reliever associated with leisure and relax-
ation. Phone usage reveals contrasting patterns; interactions at
home often indicate positive connections, whereas excessive use
in social settings suggests stress or discomfort. The balance be-
tween social and personal time is crucial, with shared spaces that
promote engagement and personal spaces that allow emotional
recharge. Importantly, these behaviors affect individuals differently;
some find “Me Time” in working out, while others prefer study-
ing or spending time in their own dorms. The code is available at
https://github.com/roycmeghna/I-HOPE.

We summarize the contributions as follows.
• Interpretable machine learning framework development:
We present I-HOPE, the first hierarchical model that maps raw
behavioral data into five interpretable interaction labels: Leisure,
Me Time, Phone Time, Sleep, and Social Time, enhancing the trans-
parency and prediction accuracy.

• Personalized mental health predictions: I-HOPE adapts to
individual behaviors, enhancing the accuracy and relevance of
mental health assessments.

• Key behavioral predictors identification: I-HOPE identifies
specific behaviors, such as sleep patterns and physical activity
levels, significantly influencing mental health outcomes, provid-
ing insight into targeted interventions.

• Scalable analytical approach: I-HOPE scales high-dimensional
behavioral data analysis, linking complex datasets to real-world
mental health applications.

2 College Experience Study (CES) Dataset
To thoroughly investigate college students’ mental health status, a
large-scale dataset that captures daily behaviors is required. There-
fore, we leverage the CES dataset [26], the longest longitudinal
mobile sensing dataset for college student behaviors, released by

Table 1: PHQ-4 scores and their categories.

PHQ-4 score Category

0-3 Normal
4-6 Mild
7-9 Moderate
10-12 Severe

Normal

Mild

Moderate

Severe Total number of data points 
excluding rows with missing 

values = 35289

21989

9534

2512

1254

Figure 1: Data distribution across PHQ-4 categories. Normal
has the highest count, whereas Severe has the lowest count.

Dartmouth College in October 2024. This dataset includes passive
mobile sensing data— mobility, physical activity, sleep patterns, and
phone usage—along with Ecological Momentary Assessment (EMA)
surveys from 217 Dartmouth students collected between 2017 and
2022. It comprises over 210,000 data points collected across two
cohorts throughout their college years on an hourly basis. The EMA
surveys are delivered randomly once a week via the StudentLife
mobile application [34].

This dataset is especially valuable for our study because it covers
a five-year period that includes pre-pandemic years, the COVID-19
pandemic, and the gradual return to normalcy as the pandemic re-
ceded. By analyzing behavioral patterns and mental health metrics
over different time periods, we can assess and predict how mobile
sensing data—collected before, during, and after the COVID-19
pandemic—predicts students’ mental health. This analysis provides
valuable insights into the pandemic’s impact on mental health and
the role of behavior in shaping it.

PHQ-4 score. The EMA survey includes a key mental health
metric, Patient Health Questionnaire-4 (PHQ-4) score [20], which
serves as the focal point for our analysis and the mental health
outcomewe aim to predict in this paper. The PHQ-4 score is a widely
recognized screening tool for assessing depressive and anxiety
symptoms in clinical settings and epidemiological studies [23]. It
ranges from 0 to 12, with lower scores indicating better mental
health. To enhance interpretability and align with standardization
practices [35], we categorize PHQ-4 scores into four levels: normal,
mild, moderate, and severe. Each category corresponds to a specific
PHQ-4 score range as shown in Table 1, which allows clearer insight
into mental health status. The distribution of data points across the
PHQ-4 categories is shown in Figure 1.

Features. The original dataset has 172 features, including smart-
phone usage, duration spent performing various activities, duration
spent at various locations, sleep information, etc. However, not
all features directly relate to mental health studies, such as the
amplitude of detected audio. Additionally, some features, such as
distance traveled and number of locations visited, are ambiguous.
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Table 2: Pearson correlations between PHQ-4 score with
smartphone usage features in five environments.

Category Metric Correlation

Overall Duration of Unlock 0.0321
# Unlocks -0.0107

Food Duration of Unlock -0.0125
# Unlocks -0.0197

Study Duration of Unlock 0.0014
# Unlocks -0.0151

Social Duration of Unlock -0.01
# Unlocks -0.0157

Dormitory Duration of Unlock -0.00215
# Unlocks -0.01505

Home Duration of Unlock 0.0188
# Unlocks 0.0033

After careful screening, we select 45 features for our study. These
features, which include contextual information, phone usage, and
sleep duration, are chosen based on the following criteria.
(1) They provide a meaningful representation of mental health

status by capturing behavioral patterns that research has con-
sistently linked to mental health.

(2) They demonstrated statistical significance with respect to the
PHQ-4 categories, with p-values less than 0.05 and, in many
cases, less than 0.01.

3 Motivation
In this section, we explore the challenges of predicting mental
health status by analyzing the CES dataset and identify key insights
for designing effective predictive models.

3.1 The Role of Smartphone Usage on Mental
Health

In mental health research, smartphone usage has increasingly been
used to facilitate real-time data collection, improve access to men-
tal health resources, and enable personalized interventions. Prior
work has shown that screen time and social media use negatively
impact mental health and digital wellbeing [14, 40]. Mobile sens-
ing and interventions have also shown promise for personalizing
mental health support [39]. Therefore, we start by focusing on two
smartphone usage metrics: the number of times phones are unlocked
(#Unlocks) and daily phone usage duration (Duration of Unlock).

To explore the relationship between these features and mental
health, we conduct a correlation analysis using the CES dataset.
The results, summarized in Table 2, indicate three main findings:
(i) longer phone usage correlates with poorer mental health; (ii)
higher unlock frequencies are associated with better mental health;
(iii) increased phone use in social and dining settings relates to
worse mental health, possibly due to social anxiety, while greater
use at home suggests positive activities like socialization, leisure,
or learning. These findings highlight the importance of context in
understanding the impact of smartphone usage on mental health.

3.2 Smartphone Usage Features Alone Are
Insufficient for Predicting Mental Health

To assess whether smartphone usage features can effectively predict
mental health outcomes, we train a machine learning model on the
CES dataset to predict the PHQ-4 score. Given that the PHQ-4 score
has four categories, as illustrated in Table 1, this constitutes a multi-
class classification problem. Therefore, we use two smartphone
features mentioned above—the number of unlocks and daily phone
usage duration—as input features to train a multilayer perceptron
(MLP) model, a neural network widely used for classification and
prediction [27]. TheMLPmodel has 2 input nodes, 3 fully connected
hidden layers, and 4 output nodes corresponding to the PHQ-4
categories. The model is trained for 50 epochs until the learning
curve stabilizes. We preprocess the data by normalizing the features
and ensuring balanced class distributions through oversampling for
the PHQ-4 categories. We randomly split the dataset into 80% for
training and 20% for testing. Our results reveal that the prediction
accuracy is only 28%, which is low. These results indicate that
relying solely on these smartphone usage features is insufficient to
predict mental health outcomes accurately.

3.3 Improving Predictions with Additional
Features

To improve prediction accuracy, we need to incorporate additional
features from the CES dataset. Specifically, we use 45 manually se-
lected features from the CES dataset related to location information,
sleep duration, and activity times (see Column 2 of Table 3). We
use the MLP model with 45 input nodes, 3 fully connected hidden
layers, and 4 output nodes corresponding to the PHQ-4 categories.
The training and test sets are the same as above. The model is
trained for 50 epochs until the learning curve stabilizes. This ap-
proach improves the prediction accuracy to 60%, which is still not
high. We attribute the low accuracy to two reasons: (i) treating the
dataset as a whole may have obscured individual differences; (ii) a
high correlation among features likely reduce the model’s ability
to make accurate predictions. We discuss these below.

Addressing Individual Differences. The CES dataset includes data
from 217 individuals, each contributing about 160 data points on
average. Research indicates that individual differences in behavior
and preferences can significantly affect predictive modeling out-
comes [17, 22]. To capture these variations, we develop personalized
MLP model for each student. We focus on students who contribute
to at least 160 data points in the dataset, which gives us 121 stu-
dents. Each model is trained on the corresponding individual’s
data with 45 selected features, maintaining the same MLP archi-
tecture and train-test split as described above. This personalized
approach improves the average prediction accuracy to 70%. This
motivates the need for additional feature engineering to improve
feature representation and prediction accuracy.

Reducing Feature Correlation. Highly correlated features intro-
duce redundancy, leading to overfitting and reduced test accuracy
while increasing computational complexity. As shown in Figure 2,
many features are highly correlated. To address this, we analyze fea-
ture importance using random forest, an efficient and interpretable
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Figure 2: Heatmap for correlations among features.

ensemble learning technique [7]. This method builds multiple de-
cision trees and combines their outputs to evaluate feature impor-
tance. Figure 3 shows the importance ranking of all 45 features,
highlighting the top ones. We select the top 50% of these features to
retrain personalized MLP models, adjusting the input dimensions
accordingly. However, this results in slight a drop in prediction
accuracy by ∼5%, indicating that simply excluding certain features
may remove critical information necessary for accurate predictions.

Key takeaway. These analyses suggest that the features influ-
encing prediction accuracy vary among individuals. For instance,
a higher biking time may correlate with better mental health for
one person, while walking may be more relevant for another, and
a combination of running and walking could be key for someone
else. A global feature importance approach risks eliminating crucial
features for individuals, potentially reducing accuracy. Therefore,
it is vital to incorporate personalization while minimizing feature
correlation, ensuring the model captures individual-specific pat-
terns without being hindered by redundant or irrelevant features,
ultimately enhancing overall prediction accuracy.

4 I-HOPE
Our analysis has shown that (1) personalized models outperform
a global model shared among students; and (2) effective feature
engineering efforts are needed to reduce feature correlation and
improve prediction accuracy. Therefore, we design I-HOPE, the first
Interpretable Hierarchical mOdel for Personalized mEntal health
prediction. I-HOPE is a two-stage hierarchical model that connects
behavioral features to mental health status through an intermediate
layer of five interaction labels: Leisure, Me Time, Phone Time, Sleep,
and Social Time, which categorize different daily behaviors. This
model structure offers two benefits:
(1) Dimension Reduction. The interaction labels serve as com-

pact representations of complex behaviors, simplifying the in-
put space while retaining the richness of the data. The effective
feature representation contributes to high prediction accuracy.

Feature Importance Score
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features not used.

Top 50% 
features 
used for 

prediction

Unlock duration
No activity duration

Number of unlocks
Walking duration

Sleep duration
Sleep start time

Sleep end time
Duration at home
Duration running

Number of unlocks at home
Duration of phone unlock at home

Duration biking
Conversations

Duration (Own dorm)
Duration (Study)

Number of unlocks (own dorm)
Duration of unlock (own dorm)

Duration of unlock (study)
Duration (foot)
Duration (others dorm)

Voice duration (home)
Conversation duration (home)

Figure 3: Feature importances using random forests.

(2) Enhanced Interpretability. I-HOPE enables the identification
of an individual’s social type and highlights the interactions
that correlate their mental health the most.
Figure 4 presents the workflow of I-HOPE design. It starts with n

input features, which are mapped to k interaction labels (𝑘 = 5), rep-
resenting aggregated behavioral categories: Leisure,Me Time, Phone
Time, Sleep, and Social Time. To quantify the behavioral insights, we
assign a score for each interaction label by introducing a two-step
rule-based method. These scores then serve as input to a neural
network model that predicts one of four mental health categories:
Normal, Mild, Moderate, or Severe. In summary, by leveraging the
hierarchical model structure, I-HOPE improves both prediction ac-
curacy and model interpretability. For example, I-HOPE can assess
whether “walking” or “spending time with friends” in the Leisure
category has a greater impact on mental health of an individual.
I-HOPE is conducted per-user basis by training and testing on indi-
vidualized data. Before introducing each stage in detail, we will first
describe the feature engineering efforts we have made to prepare
the final input dataset for I-HOPE.

4.1 Feature Engineering
In §3, we have demonstrated that high quality input features are
critical to high prediction accuracy. Based on our previous analysis,
we further conduct the following feature engineering procedure to
prepare the input dataset for I-HOPE.

In our case, feature engineering is guided by domain relevance,
ensuring that derived features carry meaningful interpretations in
the context of mental health. For example, rather than using the
number of phone unlocks and duration of phone usage as sepa-
rate features, we introduce a ratio feature: number_of_unlocks /
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Map features to 
Interaction Labels

Raw input data
(n different features)

k Interaction Labels
(n >> k)

Leisure

Me Time

Sleep

Social Time

STAGE1
INTERACTION LABELà PHQ-4 CATEGORY

Leisure
Score

SleepScore

PhoneTime
Score

SocialTime
Score

Interaction Label Score

Normal

Mild

Severe

Moderate

Prediction 
using NN

(Personalized 
Predictions)

Mental Health 
Status

(PHQ-4 Category)

Rule-based 
Scoring

(Personalized 
Feature 

Importance)

INPUT FEATURE à INTERACTION LABEL
STAGE2 

Phone 
Time

MeTime
Score

Figure 4: Workflow of the I-HOPE design.

Table 3: Interaction labels and their corresponding features.

Interaction label Relevant features corresponding to each interaction label

Leisure
• Duration of physical activities (biking, walking, running)
• Duration of conversations (in-person and phone)
• Duration in locations like others’ dorm, workout
• Duration of phone usage in various locations

Me Time
• Duration of activities (biking, walking, running, being still, studying)
• Various measures at home (conversation detected, duration)
• Conversations detected at own dorm or home
• Duration of phone usage in various locations

Phone Time • Duration of phone conversations in various locations
• Ratio of number of calls to duration of calls
• Ratio of number of phone unlocks to duration of unlocks, in various locations

Sleep
• Duration of stillness
• Audio detection at home or own dorm
• Phone usage at night
• Sleep duration

Social Time • Duration of social activities (biking, walking, running, workout, study, eating food)
• Ratio of number of calls to duration of calls at locations like study space, home, etc.
• Amount of time spent in others’ dorm

duration_of_usage. A high value of this feature suggests more
frequent, brief interactions with the phone, and potentially indica-
tive of restlessness. We apply similar transformation across multiple
contextual locations, including home, own dorm, study spaces, oth-
ers’ dorms, social environments, and overall daily usage. In addition,
instead of separately including the number and duration of incom-
ing and outgoing calls, we combine them into a single feature:

Number of incoming calls + outgoing calls

Call duration of incoming + outgoing calls
.

This consolidation maintains the behavioral signal while reducing
redundancy. Overall, we reduce the 45 features to 35 final features,

preserving domain-specific behavioral meaning while improving
computational efficiency.

4.2 Stage 1: Input Features → Interaction Labels
In Stage 1, I-HOPE maps input 35 features to five interaction la-
bels: Leisure, Me Time, Phone Time, Sleep, and Social Time. This
approach combines domain knowledge and data-driven insights to
capture relevant behavioral dimensions, reduce redundancy, and
enhance interpretability while maintaining granularity for person-
alized analysis. The detailed process is described below.
(1) Initial mapping:We manually map each feature to different

each interaction label based on their semantic and behavioral
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Algorithm 1 Rule-based initialization of SleepScore
1: Input: Thresholds of each feature in Sleep label, which are

population means of the feature distributions.
2: Initialize: SleepScore = 0
3: if Sleep duration > Threshold (where Threshold = Mean of

Sleep duration distribution) then
4: SleepScore += 1
5: end if
6: if Duration at own dorm > Threshold (where Threshold =

Mean of Duration at own dorm distribution) then
7: SleepScore += 1
8: end if
9: if Duration of stillness > Threshold (where Threshold =

Mean of Duration of stillness distribution) then
10: SleepScore += 1
11: end if
12: if Conversation detected at home < Threshold (where

Threshold = Mean of Conversation detected at home dis-
tribution) then

13: SleepScore += 1
14: end if
15: Output: SleepScore

relevance. For instance, features like unlock duration and phone
conversations belong to Phone Time, while duration of social
activities and time spent with friends belong to Social Time. The
initial mapping is detailed in Table 3. Notably, some features are
assigned to multiple labels, reflecting their multidimensional
impact on various behavioral categories. We further employ
K-means clustering with k=5 to perform a soft validation, as-
sessing whether five interaction labels are a reasonable choice.

(2) Rule-based scoring initialization: Since interaction labels
are manually created, we need to assign them numerical val-
ues for downstreaming quantitative analysis. I-HOPE uses a
two-step rule-based scoring method to compute an [Interac-
tionLabel]Score for each label. The first step is to initialize the
scores. Specifically, for each feature within a label, we compare
its value to the population mean value of that feature; if it ex-
ceeds the mean, the score increases by 1. The intuition is that
higher feature values suggest stronger relevance to the label
and thus contribute more to its score. We illustrate the first step
of this method using the Sleep label in Algorithm 1, although
the same procedure applies to all interaction labels.

(3) Rule-based scoring using feature importance: The second
step of the rule-based scoring method is to use a random for-
est model on the features and initialized scores to assess the
contribution of individual input features to each interaction
label. We choose random forest due to its ability to handle
high-dimensional data and capture nonlinear relationships [7].
I-HOPE then uses feature importance generated from random
forest to refine the final scores. For each feature within a la-
bel, we compare its value to the population mean; if its value
exceeds the mean, we increase the score by its Normalized
Weighted Feature Impact (NWFI), which is a weighted measure
combining the feature’s random forest-derived importance and

Algorithm 2 Rule-based final scoring of SleepScore
1: Input: Thresholds of each feature in Sleep label, which are

population means of the feature distributions.
2: Initialize: SleepScore = 0
3: if Sleep duration > Threshold (where Threshold = Mean of

Sleep duration distribution) then
4: SleepScore += NWFI of Sleep duration
5: end if
6: if Duration at own dorm > Threshold (where Threshold =

Mean of Duration at own dorm distribution) then
7: SleepScore += NWFI of Duration at own dorm
8: end if
9: if Duration of stillness > Threshold (where Threshold =

Mean of Duration of stillness distribution) then
10: SleepScore += NWFI of Duration of stillness
11: end if
12: if Conversation detected at home < Threshold (where

Threshold = Mean of Conversation detected at home dis-
tribution) then

13: SleepScore += NWFI of Conversation detected at home
14: end if
15: Output: SleepScore

its normalized value. The normalization reflects the scaling of
feature values, and the weighted indicates the incorporation of
random forest feature importance. We illustrate the second step
of this method using the Sleep label in Algorithm 2, although
the same procedure applies to all interaction labels.

4.3 Stage 2: Interaction Labels→ PHQ-4
Category

In Stage 2, I-HOPE uses the five interaction label scores (LeisureScore,
MeScore, PhoneScore, SleepScore, SocialScore) as inputs to predict
PHQ-4 categories. This stage simplifies the predictive process by
using these labels as compact and interpretable representations of
the raw data. Specifically, I-HOPE builds a neural network model to
predict PHQ-4 categories using the five interaction label scores as
inputs. The neural network includes an input layer with five nodes,
three hidden layers for pattern extraction, and an output layer with
four nodes for the PHQ-4 categories (Normal, Mild, Moderate, or
Severe). I-HOPE uses the ReLU activation function for hidden layers
and the Softmax activation function for the output layer for multi-
class classification. The neural network model is trained for 50
epochs using the Adam optimizer [19] with a learning rate of 0.001
and categorical cross-entropy as the loss function.

4.4 Implementation
We implement I-HOPE in Python. We use Pandas and NumPy for
data preprocessing (cleaning, transformation, and feature extrac-
tion) and feature engineering. We implement neural network mod-
els using TensorFlow. Evaluation metrics such as accuracy are
computed with Scikit-learn.
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Table 4: Comparison of different methods for predicting PHQ-4 categories. Evaluation metrics include precision (Pre.), recall
(Rec.), F1-score (F1), and overall accuracy for each PHQ-4 category.

PHQ-4 Category Baseline 1 Baseline 2 Baseline 3 I-HOPE

Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1

Normal 0.6453 0.627 0.6360 0.7149 0.677 0.6954 0.6781 0.654 0.6659 0.9513 0.9285 0.9398
Mild 0.6135 0.617 0.6152 0.6432 0.667 0.6549 0.6297 0.667 0.6478 0.9489 0.9285 0.9386
Moderate 0.5908 0.600 0.5953 0.6371 0.660 0.6483 0.6083 0.660 0.6332 0.8791 0.8690 0.8740
Severe 0.5831 0.559 0.5708 0.6265 0.614 0.6202 0.5982 0.614 0.6060 0.8645 0.9138 0.8884

Overall Accuracy 0.60 0.70 0.65 0.91

Confusion Matrix (Normalized)
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0.06730.00950.0095

0.0143 0.0120

0.0238 0.0285 0.0192

0.01920.02380.0285

Figure 5: Normalized confusion matrix from I-HOPE.

5 Evaluation
In this section, we evaluate the I-HOPE to address the following
research questions (RQs):
RQ1. Prediction accuracy: How accurately does I-HOPE predict

the mental health status of college students?
RQ2. Interpretability from hierarchical mapping:What new

insights into mental health can we gain from hierarchical
feature mapping of I-HOPE?

RQ3. Scoring for interaction labels: How much do features
contribute to the scoring of interaction labels?

The rest of this section is divided into three parts, each addressing
a research question.

5.1 Prediction Accuracy
We compare I-HOPE against three baseline methods that differ in
the training approach (aggregated vs. personalized), feature extrac-
tion (all raw features vs. selected features) and model structure
(single stage vs. hierarchical). We evaluate 121 students who con-
trobut at least 160 data points in the dataset. We report results
from the best-performing model from 5-fold cross validation for all
baselines. The methods are summarized as follows, all using the

previously described neural network architecture with adjusted
input dimensions:
• Baseline 1: An aggregated single model trained with selected
45 raw features across 121 students.

• Baseline 2: Personalized models for each individual using se-
lected 45 raw features.

• Baseline 3: Personalized models for each individual using the
top 50% of 45 features based on feature importance from random
forest models.

• I-HOPE: The InterpretableHierarchical mOdel for Personalized
mEntal health prediction presented in this paper.
The evaluation results are summarized in Table 4. Baseline 1

achieves 60% accuracy due to feature redundancy and lack of per-
sonalization. Baseline 2 improves to 70% but still faces feature corre-
lation and redundancy issues. Baseline 3 reduces feature correlation
using feature importance but drops to 65% accuracy by excluding
significant features. In contrast, I-HOPE reaches 91% overall pre-
diction accuracy by using interaction labels to capture distinct user
behaviors while balancing interpretability and predictive power.We
can see that the baseline methods struggle with feature redundancy
and adapting to user-specific patterns, while I-HOPE effectively
integrates personalized interaction labels and feature importance.
We also breakdown I-HOPE’s predictions against the true labels for
each category using a confusion matrix. As shown in Figure 5, I-
HOPE achieves high accuracy across all four categories. Overall, the
evaluation using multiple metrics highlights the strong predictive
performance of I-HOPE.

5.2 Interpretability
To gain insights intomental health and improve prediction accuracy,
it is crucial to extract meaningful and interpretable features from
raw behavioral data. I-HOPE simplifies and organizes raw data into
actionable constructs, enabling the capture of individual behavioral
patterns and their connection to mental health outcomes.

5.2.1 Evaluation of Stage 1: Input Features → Interaction Labels.
The first stage of I-HOPE maps the raw input features into five
interaction labels: Leisure, Me Time, Phone Time, Sleep, and Social
Time. This simplifies the dataset while preserving key behavioral
patterns relevant to mental health. To enhance interpretability, we
conduct feature importance analysis for all selected features within
each label. This analysis identifies which features most influence
the model’s predictions, revealing meaningful behavioral patterns
related to mental health. We use a random forest model to compute
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Figure 6: The individual-level heatmaps that highlight feature importance for each interaction label across 217 individuals
(UIDs). The y-axis represents label-specific features, which vary across different interaction labels.

feature importance scores, providing an interpretable ranking of
features based on their contributions. This analysis is performed
individually for personalized insights into user behavior.

Figure 6 shows personalized feature importance across five labels
using heatmaps for 217 students. The analysis reveals distinct pat-
terns of feature relevance for each label, highlighting both shared
and unique predictors. Below, we summarize the key findings and
insights for each label.
• Label: Leisure - Feature F4 (Duration of walking) emerged as
the most important predictor for 90.36% of individuals, empha-
sizing walking as a key leisure activity. Other features, such as
F13 (Phone usage at home), F3 (Duration of running), F5 (Dura-
tion of conversations), F8 (Voice detection at others’ dorms), and
F14 (Phone usage at others’ dorms), are moderately important
for 20–25% of individuals, indicating that leisure also encom-
passes social interactions and phone use. In contrast, features
like F1 (Biking duration), F2 (Footsteps), F6 (Duration of calls),
F9 (Conversations at others’ dorms), F10 (Audio detections at
social places), F11 (Duration at “leisure”), and F12 (Workout dura-
tion) consistently show lower relevance. F11 has low importance
despite its direct link to the label, likely due to unclear dataset def-
initions, underscoring the need for improved data clarity. These

findings illustrate how behaviors like walking and social interac-
tions influence leisure and provide insights into broader themes
related to mental health and lifestyle habits.

• Label: Me Time - Features such as F16 (Phone usage at own
dorm), F12 (Time spent at own dorm), F7 (Voice detections at own
dorm), F13 (Study duration), and F17 (Phone usage at study loca-
tions) are important for 89.5% of individuals, with F12 and F16
being the most significant. These findings suggest that activities
in dorm spaces, such as studying and socializing, are key indica-
tors of “Me Time” and contribute to a supportive environment.
Conversely, features like F1 (Biking duration), F2 (Footsteps), F3
(Running duration), F5 (Walking duration), and F14 (Workout
duration) show low importance, indicating that individual physi-
cal activities are less relevant to this label. Other features display
varying levels of significance across individuals, reflecting the
diverse experiences of “Me Time”. These results underscore the role
of personal environments like dorms in fostering meaningful rou-
tines and behaviors, offering insights into how individuals balance
solitude, productivity, and emotional wellbeing.

• Label: Sleep - Features F6 (Sleep duration) and F7 (Duration
of being idle) are key predictors, highlighting the importance of
inactivity and sleep in identifying sleep patterns. Features like F1
(Conversation detection at dorm) and F4 (Location at dorm) show
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moderate importance, suggesting that reduced social interactions
and staying in the dorm contribute to recognizing sleep behaviors,
likely linked to quiet nighttime routines. In contrast, features
such as F2 (Voice detections at home), F3 (Conversations at home),
F5 (Phone usage at home), and F8 (Health fitness) are minimally
relevant. These results emphasize the role of inactivity and dorm
contexts in understanding sleep patterns while activities like fitness
or phone use have a limited impact on sleep.

• Label: Social Time - Feature F15 (Duration at study location) is
the key predictor, indicating a strong link between study locations
and social activities. Other features include F2 (Walking duration),
F7 (Voice detections at study areas), F13 (Time spent in others’
dorms), and F16 (Phone usage in others’ dorms), which highlight
the importance of mobility, conversations, and phone use. In
contrast, features like F1 (Footsteps), F9 (Conversations in others’
dorms), F10 (Conversations at social places), and F12 (Duration of
leisure) show limited importance, suggesting they are less directly
related to social time or relevant only for a few individuals. These
findings emphasize the role of specific environments and interaction
patterns in shaping social time while indicating that factors like
leisure duration or general mobility have a minor impact.

• Label: Phone Time - Feature F10 (Phone usage at own dorm)
is the primary predictor, indicating that students primarily use
their phones in personal spaces where they feel comfortable
engaging in calls andmessaging. Other features include F5 (Audio
detected at own dorm), F7 (Audio detected at home), F8 (Phone
usage at home), F12 (Phone usage at study locations), and F13
(Phone usage throughout the day), which highlight variations in
phone use across personal, home, and study contexts. Conversely,
features like F1 (Audio conversations detected throughout the
day), F2 (Number of SMS), F3 (Voice detection at home), F4 (Voice
detection in social settings), F6 (Conversations detected at home),
F9 (Phone usage in others’ dorms), and F10 (Phone usage in
workout areas) show minimal relevance, likely due to ambiguous
definitions or differences in data collection between iOS and
Android devices. These findings emphasize the role of personal and
study spaces in shaping phone usage while highlighting the need
for clearer feature definitions and standardized data collection to
enhance the reliability of less relevant features.
In summary, the findings reveal personalized variability among

students in feature importance, with key behavioral patterns linked
to mental health and activity contexts:
• Behavioral patterns:Walking, phone usage, and time in per-
sonal spaces are key to labels like Leisure, Phone Time, and Me
Time. Walking supports relaxation, while dorm-based phone use
reflects connection and self-reflection, linking physical spaces to
emotional wellbeing.

• Activity contexts: Study locations and others’ dorms strongly
predict Social Time, emphasizing collaborative settings. In con-
trast, private spaces dominate Me Time and Phone Time, illustrat-
ing the balance between shared and personal spaces for social
engagement and self-care.

• Sleep and rest: Sleep duration and idle time are central to Sleep,
with dorm-related contexts suggesting restful routines tied to
spatial habits and reduced interactions, reinforcing sleep’s role
in mental health.
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Figure 7: The individual-level heatmap that shows the im-
portance of interaction label scores in predicting PHQ-4 cat-
egories. Each row represents an interaction label across 217
individuals.

• Personalized variability as a key factor: The varying im-
portance of features like walking or conversation detection re-
flects the individual nature of behavior. Tailored analyses can
enhance mental health predictions, making them more accurate
and context-aware.
These results emphasize the importance of selecting features

that capture distinct behavioral dimensions for interaction labels.
They also demonstrate that personalized analysis is key for accurate
mental health prediction, as feature importance varies across users.
This forms the basis for our label scoring and predictions, explained
in the following subsections.

5.2.2 Evaluation of Stage 2: Interaction Labels→ PHQ-4 Categories.
Figure 7 shows the importance of interaction labels (Leisure, Me
Time, Phone Time, Sleep, Social Time) in predicting PHQ-4 mental
health categories across 217 users. Each row corresponds to a la-
bel, and each column represents an individual user, with colors
ranging from dark purple (low importance) to bright yellow (high
importance). The figure highlights how the relevance of these labels
varies significantly across individuals, revealing the personalized
nature of mental health predictors.

Among the labels, Sleep is the most consistently important, with
high relevance for 95% of students, reflecting the strong link be-
tween healthy sleep patterns and stable mental health. Phone Time
also shows significant importance across many users, likely indi-
cating stress or coping behaviors related to screen use. In contrast,
labels like Social Time and Leisure exhibit more variability; Social
Time is crucial for some but less so for others, reflecting individual
differences in social interactions’ impact onmental health. Similarly,
Leisure is an important predictor for a subset of users, emphasiz-
ing the role of relaxation activities. However, Me Time serves as a
predictor for an even smaller group, highlighting the challenges of
finding solitude in a school environment with shared spaces.

In all, Figure 7 underscores a critical insight – mental health
predictors are not one-size-fits-all. Each label contributes uniquely,
reflecting the diverse and personalized ways behavioral patterns
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Figure 8: Mean feature importance across all individuals for
each interaction label.

influence mental health outcomes. While Sleep and Phone Time act
as general predictors across most users, Social Time, Me Time, and
Leisure provide insights tailored to specific individuals. By combin-
ing these labels, we can build a comprehensive understanding of
behavioral patterns and their impact on mental health, supporting
the need for personalized modeling approaches to predict PHQ-4
categories effectively.

5.3 Scoring for Interaction Labels
To analyze how each feature contributes to scoring for each interac-
tion label, we visualize the feature importances of relevant features
derived from random forest models across all individuals. Figure 8
displays the top features (marked with a star) for each interaction
label:
• Leisure: F3 (running duration), F4 (walking duration) , F5 (con-
versation duration), F8 (voice detection at others’ dorms), F13
(phone usage at home), and F14 (phone usage at others’ dorms).

• Me Time: F7 (voice detections at own dorm), F12 (time spent in
own dorm), F13 (study duration), F16 (phone usage at own dorm),
and F17 (phone usage at study locations).
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Figure 9: Thresholds for LeisureScore calculation based on
six features. The vertical dashed red line is the threshold.

• Sleep: F1 (conversations detected at dorm), F4 (duration at own
dorm), F6 (sleep duration), and F7 (duration of being idle).

• Social Time: F2 (walking duration), F7 (voice detected at study
location), F13 (time in others’ dorms), F15 (duration at study
location), and F16 (phone usage at others’ dorm).

• Phone Time: F5 (audio detected at own dorm), F8 (phone usage
at home), F10 (phone usage at own dorm), F12 (phone usage
at study locations), and F13 (phone usage throughout the day).
Phone usage corresponds to the ratio of the number of phone
unlocks to usage duration.
As illustrated in Algorithm 2, the scores for each interaction label

are calculated based on the weighted importance of various features
(i.e., NWFI in Algorithm 2), measured against a threshold value
derived from the mean of distribution across all individuals. Next,
we show the thresholds for Leisure Time and Sleep to demonstrate
how feature contributions influence the final label scoring.

In Figure 9, the dotted lines highlight the threshold values for
the most important features (F4, F13, F3, F5, F14, and F8) for Leisure
Time . F4 reflects walking duration: if a student’s walking duration
is less than the threshold (3 hours), it indicates leisure activity.
Consequently, the LeisureScore is incremented proportionally to the
weighted feature importance of walking for the respective student.
Similarly, F8 considers voice detection in others’ dormitories. If the
duration exceeds the threshold (15 minutes), it suggests that the
student is having leisure time with friends, causing an increase in
LeisureScore by the corresponding weighted feature importance.
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Figure 10: Thresholds for SleepScore calculation based on
four features. The vertical dashed red line is the threshold.

In Figure 10, the dotted lines highlight the threshold values for
themost important features (F6, F4, F7, and F1) for Sleep. F6 indicates
total sleep duration: if a student’s sleep exceeds 7 hours, represent-
ing the standard benchmark for healthy sleep, the SleepScore is
incremented based on the student’s weighted feature importance
for sleep. F4, which measures the time spent in the room, shows that
durations greater than 12.9 hours typically signify overnight dorm
occupancy, often indicative of sleep rather than other activities. F7
corroborates healthy sleep with thresholds above 7.5 hours, while
F1 reflects quietness, with values below 6 minutes suggesting an
environment conducive to rest.

6 Related Work
Machine learning increasingly tackles various challenges in mental
health research [2, 12, 18, 29, 30, 33]. Using data frommobile devices
that monitor smartphone use, social media activity, and medical
records, researchers have developed machine learning techniques
to identify and predict conditions such as depression, anxiety, and
stress [15, 28, 40]. Furthermore, natural language processing has
opened new pathways for analyzing text data, including social
media posts and therapy transcripts, offering valuable insights into
emotional and psychological states [3, 11, 13, 21, 31].

However, despite these advances, many machine learning tech-
niques struggle to capture and understand mental health character-
istics at the individual level. Researchers often focus on applying
techniques without addressing the issues of variability, personaliza-
tion, and interpretability [5, 24, 25, 32]. This limitation restricts the
practical application of these methods, particularly in treatment
recommendations and interventions.

The release of the College Experience Study dataset offers a
unique opportunity to analyze the longest longitudinal passive mo-
bile sensing dataset on the mental health of college students at the

individual level [26]. Our prior work was the first attempt to ana-
lyze this dataset [38]. This paper goes a step further by addressing
a key research gap with I-HOPE, the first interpretable hierarchical
model designed to accurately predict and offer new insights into
the mental health of college students.

7 Conclusion and Future Work
This paper addresses the challenge of personalized predictions and
understanding mental health among college students. Leveraging
a cutting-edge longitudinal dataset, we present I-HOPE, the first
hierarchical model designed to predict and interpret mental health
status at the individual level. I-HOPE bridges the gap between
black-box machine learning and actionable insights, offering both
accurate and interpretable, personalized predictions. These con-
tributions are especially important in the mental health domain,
where individualization is critical.

Our evaluation shows that I-HOPE has a better performance than
baseline methods and offers insights into how behavioral patterns,
such as sleep, phone usage, and social time, relate to mental health
outcomes on a personalized level. However, like any data-driven
model, there are several areas that offer opportunities for further
improvement, which we describe as follows.

From a data perspective, our analysis relied on features aggre-
gated at a daily level. Incorporating higher-resolution hourly data
could reveal more granular behavioral patterns, potentially en-
hancing prediction accuracy. Additionally, certain data processing
decisions—such as replacing missing values with zeros—may over-
simplify real-world behaviors. Future work could explore more
sophisticated imputation techniques to better capture underlying
trends.

From a modeling perspective, while the current framework uses
five interaction labels—empirically motivated and preliminarily
validated—future work could systematically explore how varying
the number of labels impacts both predictive performance and
interpretability. Additionally, incorporating aggregate metrics (e.g.,
mean performance) and confidence intervals during evaluation
would offer a more robust assessment of model reliability.

Furthermore, the lack of a fixed random seed introduced unin-
tended variability in reported results; standardizing this in future
experiments will improve reproducibility and consistency.

These refinements present a pathway for advancing mental
health research, enabling the development of more interpretable,
personalized, and actionable models.
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