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Abstract

Learning for maximizing AUC performance is an im-
portant research problem in machine learning. Unlike
traditional batch learning methods for maximizing AUC
which often suffer from poor scalability, recent years
have witnessed some emerging studies that attempt
to maximize AUC by single-pass online learning ap-
proaches. Despite their encouraging results reported,
the existing online AUC maximization algorithms often
adopt simple stochastic gradient descent approaches,
which fail to exploit the geometry knowledge of the
data observed in the online learning process, and thus
could suffer from relatively slow convergence. To over-
come the limitation of the existing studies, in this paper,
we propose a novel algorithm of Adaptive Online AUC
Maximization (AdaOAM), by applying an adaptive gra-
dient method for exploiting the knowledge of histori-
cal gradients to perform more informative online learn-
ing. The new adaptive updating strategy by AdaOAM
is less sensitive to parameter settings due to its natural
effect of tuning the learning rate. In addition, the time
complexity of the new algorithm remains the same as
the previous non-adaptive algorithms. To demonstrate
the effectiveness of the proposed algorithm, we analyze
its theoretical bound, and further evaluate its empiri-
cal performance on both public benchmark datasets and
anomaly detection datasets. The encouraging empirical
results clearly show the effectiveness and efficiency of
the proposed algorithm.

Introduction

AUC (Area Under ROC curve) (Hanley and McNeil 1982)
is an important measure for characterizing machine learn-
ing performances in many real-world applications, such as
ranking, and anomaly detection tasks, especially when mis-
classification costs are unknown. In general, AUC measures
the probability for a randomly drawn positive instance to
have a higher decision value than a randomly sample neg-
ative instance. Many efforts have been devoted recently to
developing efficient AUC optimization algorithms for both
batch and online learning tasks (Cortes and Mohri 2003;
Calders and Jaroszewicz 2007; Joachims 2005; Rudin and
Schapire 2009; Zhao et al. 2011; Gao et al. 2013).
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Due to its high efficiency and scalability in real-world ap-
plications, online AUC optimization for streaming data has
been actively studied in the research community in recent
years. The key challenge for AUC optimization in online set-
ting is that AUC is a metric represented by the sum of pair-
wise losses between instances from different classes, which
makes conventional online learning algorithms unsuitable
for direct use in many real world scenarios. To address this
challenge, two core types of Online AUC Maximization
(OAM) frameworks have been proposed recently. The first
framework is based on the idea of buffer sampling (Zhao et
al. 2011; Kar et al. 2013), which stores some randomly sam-
pled historical examples in a buffer to represent the observed
data for calculating the pairwise loss functions. The other
framework focuses on one-pass AUC optimization (Gao et
al. 2013), where the algorithm scan through the training data
only once. The benefit of one-pass AUC optimization lies
in the use of squared loss to represent the AUC loss func-
tion while providing proofs on its consistency with the AUC
measure (Gao and Zhou 2012).

Although these algorithms have been shown to be capa-
ble of achieving fairly good AUC performances, they share
a common trait of employing the online (stochastic) gra-
dient descent technique, which fails to take advantage of
the geometry property of the data observed from the on-
line learning process, while recent studies have shown the
importance of exploiting this information for online opti-
mization (Duchi, Hazan, and Singer 2011). To overcome the
limitation of the existing works, we propose a novel frame-
work of Adaptive Online AUC maximization (AdaOAM),
which considers the adaptive gradient optimization tech-
nique for exploiting the geometric property of the observed
data to accelerate online AUC maximization tasks. Specifi-
cally, the technique is motivated by a simple intuition, that is,
the frequently occurring features in online learning process
should be assigned with low learning rates while the rarely
occurring features should be given high learning rates. To
achieve this purpose, we propose the AdaOAM algorithm
by adopting the adaptive gradient updating framework pro-
posed by (Duchi, Hazan, and Singer 2011) to control the
learning rates for different features. We theoretically prove
that the regret bound of the proposed algorithm is better
than those of the existing non-adaptive algorithms. We also
empirically compared the proposed algorithm with several
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state-of-the-art online AUC optimization algorithms on both
benchmark datasets and real-world online anomaly detec-
tion datasets. The promising results further validate the ef-
fectiveness and efficiency of the proposed algorithm.

The rest of this paper is organized as follows. We first
review related works from both online learning and AUC
optimization, and then present the formulations of the pro-
posed approach and its theoretical analysis; we further dis-
cuss our obtained experimental results, and the sensitivity of
the parameters, and finally conclude the paper with a brief
summary of our work.

Related Work
Our work is closely related to two topics in the context of
machine learning, namely, online learning and AUC opti-
mization. Below we briefly review some of the important
related works in both areas.

Online Learning. Online learning has been extensively
studied in the machine learning communities (Cesa-Bianchi
and Lugosi 2006; Crammer et al. 2006; Zhao, Hoi, and Jin
2011; Hoi et al. 2013; Zhao et al. 2014), mainly due to its
high efficiency and scalability to large-scale datasets. Dif-
fering from conventional batch learning methods that as-
sume all training instances are available prior to the learn-
ing phase, online learning considers one instance each time
to update the model sequentially and iteratively. Therefore,
online learning is ideally appropriate for tasks in which data
arrives sequentially. A number of first-order algorithms have
been proposed including the well-known Perceptron algo-
rithm (Rosenblatt 1958) and the Passive-Aggressive (PA)
algorithm (Crammer et al. 2006). Although the PA intro-
duces the concept of “maximum margin” for classification,
it fails to control the direction and scale of parameter up-
dates during online learning phase. In order to address this
issue, recent years have witnessed some second-order online
learning algorithms (Dredze, Crammer, and Pereira 2008;
Crammer, Kulesza, and Dredze 2009; Orabona and Cram-
mer 2010; Wang, Zhao, and Hoi 2012), which apply pa-
rameter confidence information to improve online learning
performance. Further, in order to solve the cost-sensitive
classification tasks on-the-fly, online learning researchers
have also proposed a few novel online learning algorithms
to directly optimize some more meaningful cost-sensitive
metrics (Wang, Zhao, and Hoi 2014; Zhao and Hoi 2013;
Hoi and Zhao 2013).

AUC Optimization. AUC (Area Under ROC curve) is an
important performance measure that has been widely used in
imbalanced data distribution classification. The ROC curve
explains the rate of the true positive against the false pos-
itive at various range of threshold. Thus, AUC represents
the probability that a classifier will rank a randomly cho-
sen positive instance higher than a randomly chosen neg-
ative one. Recently, many algorithms have been developed
to optimize AUC directly (Cortes and Mohri 2003; Calders
and Jaroszewicz 2007; Joachims 2005; Zhao et al. 2011;
Gao et al. 2013). In (Joachims 2005), the author firstly
presented a general framework for optimizing multivariate
nonlinear performance measures such as the AUC, F1, etc.
in a batch mode. However, it is worth investigating online

learning algorithms for AUC optimization involving large-
scale applications. Among the online AUC optimization ap-
proaches, two core online AUC optimization frameworks
have been proposed very recently. The first framework is
based on the idea of buffer sampling (Zhao et al. 2011;
Kar et al. 2013), which employed a fixed-size buffer to rep-
resent the observed data for calculating the pairwise loss
functions. A representative study is available in (Zhao et
al. 2011), which leveraged the reservoir sampling technique
to represent the observed data instances by a fixed-size
buffer where notable theoretical and empirical results have
been reported. Then, (Kar et al. 2013) studied the improved
generalization capability of online learning algorithms for
pairwise loss functions with the framework of buffer sam-
pling. The main contribution of their work is the introduc-
tion of the stream subsampling with replacement as the
buffer update strategy. The other framework which takes a
different perspective was presented by (Gao et al. 2013).
They extended the previous online AUC optimization frame-
work with a regression-based one-pass learning mode, and
achieved solid regret bounds by considering square loss for
the AUC optimization task due to its theoretical consistency
with AUC.

Despite the extensive works in both the fields of online
learning and AUC optimization, to the best of our knowl-
edge, our current work represents a first effort to explore
adaptive gradient optimization and second order learning
techniques for online AUC optimization. In particular, we
explore the second order statistics of data to update the clas-
sifier adaptively at each stage and take full advantage of the
geometrical information available in the data.

An Adaptive Gradient Method for OAM

Problem Setting

We aim to learn a linear classification model that maximizes
AUC for a binary classification problem. Without loss of
generality, we assume positive class to be less than negative
class. Denote (xt, yt) as the training instance received at the
t-th trial, where xt ∈ R

d and yt ∈ {−1,+1}, and wt ∈ R
d

is the weight vector learned so far.
Given this setting, let us define the AUC measure-

ment (Hanley and McNeil 1982) for binary classifica-
tion task. Given a dataset D = {(xi, yi) ∈ R

d ×
{−1,+1}| i ∈ [n]}, where [n] = {1, 2, . . . , n}, we di-
vide it into two sets naturally: the set of positive instances
D+ = {(x+

i ,+1)| i ∈ [n+]} and the set of negative in-
stances D− = {(x−j ,−1)| j ∈ [n−]}, where n+ and n− are
the numbers of positive and negative instances, respectively.
For a linear classifier w ∈ R

d, its AUC measurement on D
is defined as follows:

AUC(w) =

∑n+

i=1

∑n−
j=1 I(w·x+

i >w·x−j )
+ 1

2
I
(w·x+

i =w·x−j )

n+n−
,

where Iπ is the indicator function that outputs a ′1′ if the prediction
π holds and ′0′ otherwise. We replace the indicator function with
the following convex surrogate, i.e., the square loss from (Gao et
al. 2013) due to its consistency with AUC (Gao and Zhou 2012)

�(w,x+
i − x−

j ) = (1−w · (x+
i − x−

j ))
2,
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and find the optimal classifier by minimizing the following objec-
tive function

L(w) =
λ

2
‖w‖22 +

n+∑
i=1

n−∑
j=1

�(w,x+
i − x−

j )

2n+n−
. (1)

where λ
2 ‖w‖22 is introduced to regularize the complexity of

the linear classifier. Note, the optimal w∗ satisfies ‖w∗‖2 ≤
1/
√
λ according to the strong duality theorem.

Adaptive Online AUC Maximization

Now, we are ready to introduce the proposed Adaptive On-
line AUC Maximization (AdaOAM) algorithm. Following
the similar approach in (Gao et al. 2013), we modify the
loss function L(w) in (1) as a sum of losses for individual

training instance
T∑

t=1
Lt(w) where

Lt(w) =
λ

2
‖w‖22 +

t−1∑
i=1

I[yi �= yt](1− yt(xt − xi)
�w)2

2|i ∈ [t− 1] : yiyt = −1| ,

for i.i.d. sequence St = {(xi, yi)|i ∈ [t]}, and it is an unbi-
ased estimation to L(w). X+

t and X−
t are denoted as the sets

of positive and negative instances of St respectively, and T+
t

and T−t are their respective cardinalities. Besides, Lt(w) is
set as 0 for T+

t T−t = 0. If yt = 1, the gradient is
∇Lt(w)

= λw + xtx
�
t w − xt +

∑
i:yi=−1

xi+ (xix
�
i −xix

�
t−xtx

�
i )w

T−
t

.

Using c−t = 1
T−t

∑
i:yi=−1

xi and S−t = 1
T−t

∑
i:yi=−1

(xix
�
i −

c−t [c
−
t ]
�) refer to the mean and covariance matrix of nega-

tive class, respectively, the gradient can be simplified as

∇Lt(w) =λw− xt+ c−t+ (xt − c−t )(xt − c−t )
�w+ S−

t w.

Similarly, if yt = −1,

∇Lt(w) =λw+ xt− c+t+ (xt − c+t )(xt − c+t )
�w+ S+

t w,

where c+t = 1
T+
t

∑
i:yi=1

xi and S+
t = 1

T+
t

∑
i:yi=1

(xix
�
i −

c+t [c
+
t ]
�) are the mean and covariance matrix of positive

class, respectively.
Upon obtaining gradient ∇Lt(w), due to ‖w∗‖ ≤ 1/

√
λ,

the model can be updated with wt = Π 1√
λ
(wt−1 −

ηtĝt(wt−1)), where Π 1√
λ
(w) = min(1, 1/

√
λ

‖w‖2 )w, ηt is the
learning rate for the t-th iteration, ĝt is the adaptive gradi-
ent calculated using the Adaptive Gradient Updating (AGU)
strategy, which will be detailed in the next subsection.

Finally, Algorithm 1 summarizes the proposed AdaOAM
method. If setting Γ+

t = S+
t and Γ−t = S−t , the covariance

matrices are updated as follows:

Γ
+
t= Γ

+
t−1+c

+
t−1[c

+
t−1]

�−c
+
t [c

+
t ]
�
+

xtx
�
t− Γ+

t−1− c+
t−1[c

+
t−1]

�

T+
t

,

Γ
−
t = Γ

−
t−1+ c

−
t−1[c

−
t−1]

�− c
−
t [c

−
t ]
�
+

xtx
�
t−Γ−t−1−c−t−1[c

−
t−1]

�

T−t
.

Algorithm 1 The AdaOAM Algorithm
Input: The regularization parameter λ, the learning rate
{ηt}Tt=1, δ ≥ 0 for AGU update.
Initialize w0 = 0, c+0 = c−0 = 0, T+

0 = T−0 = 0,
Γ+
0 = Γ−0 = [0]d×d.

for t = 1, 2, . . . , T do
Receive an incoming instance (xt, yt);
if yt = +1 then

T+
t = T+

t−1 + 1, T−t = T−t−1;
c+t = c+t−1 +

1
T+
t

(xt − c+t−1) and c−t = c−t−1;

Update Γ+
t and Γ−t = Γ−t−1;

ĝt updated by AGU;
else

T−t = T−t−1 + 1, T+
t = T+

t−1;
c−t = c−t−1 +

1
T−t

(xt − c−t−1) and c+t = c+t−1;

Update Γ−t and Γ+
t = Γ+

t−1;
ĝt updated by AGU;

end if
wt = Π 1√

λ
(wt−1 − ηtĝt);

end for

Adaptive Gradient Updating

In order to perform feature-wise gradient updating, we
employ the second order gradient optimization technique,
i.e., Adaptive Gradient Updating (AGU) strategy, inspired
by (Duchi, Hazan, and Singer 2011), which is detailed in
the following Algorithm 2.

Algorithm 2 Adaptive Gradient Updating (AGU)
Input: δ ≥ 0.
Output: Adjusted gradient ĝt.
Variables: s ∈ R

d, H ∈ R
d×d, g1:t,i ∈ R

t for i ∈
1, . . . , d.
Initialize g1:0 = [ ].
for t = 1, 2, . . . , T do

Suffer loss Lt(w);
Receive gradient gt = ∇Lt(w);
Update g1:t = [g1:t−1 gt], st,i = ‖g1:t,i‖2;
Ht = δI + diag(st);
ĝt = H−1

t gt;
end for
Return ĝt

The intuition of this strategy is very natural, which consid-
ers the rare occurring features as more informative and dis-
criminative than those frequently occurring features. Thus,
these informative rare occurring features should be updated
with higher learning rates by incorporating the geometrical
property of the data observed in earlier stages. Besides, by
using the previously observed gradients, the update process
can mitigate the effects of noise and speed up the conver-
gence rate intuitively. In order to reduce the computation ef-
forts incurred, we adopted the roots of the diagonal matrices
(approximation to the Hessian of the loss functions). Fur-
ther, the smooth parameter δ > 0 is introduced to make the
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diagonal matrix invertible and the algorithm robust, which
is usually set as a very small value.

Theoretical Analysis

This section presents our main theoretical results. First, we
give the regret bound of the proposed AdaOAM algorithm.

Theorem 1. Assume ‖wt‖ ≤ 1/
√
λ, (∀t ∈ [T ]) and

the diameter of χ = {w|‖w‖ ≤ 1√
λ
} is bounded via

supw,u∈χ‖w − u‖∞ ≤ D∞, we have

T∑
t=1

[Lt(wt)− Lt(w∗)] ≤ 2D∞
d∑

i=1

√√√√ T∑
t=1

[(λwt,i)2 + C(rt,i)2],

where C ≤ (1 + 2√
λ
)2, and rt,i = maxj<t |xj,i − xt,i|.

Proof. We first define w∗ as w∗ = argmin
w

∑
t Lt(w).

Based on the regularizer λ
2 ‖w‖2, it is easy to obtain

‖w∗‖2 ≤ 1/λ due to the strong convexity property, and it
is also reasonable to restrict wt by ‖wt‖2 ≤ 1/λ. Denote
the projection of a point w onto ‖u‖2 ≤ 1√

λ
according to

L2-norm by Π 1√
λ
(w) = argmin‖u‖≤ 1√

λ
‖u − w‖2. After

introducing the above, our adaptive subgradient descent em-
ploys the following update:

wt+1 = Π 1√
λ
(wt − ηH−1

t gt).

Concretely, for some small fixed δ ≥ 0, we set Ht = δI +
diag(st) and ψt(gt) = 〈gt, Htgt〉. We also denote the dual
norm of ‖·‖ψt

by ‖·‖ψ∗t , in which case ‖gt‖ψ∗t = ‖gt‖H−1
t

.
From (Duchi, Hazan, and Singer 2011), it is known that

T∑

t=1

‖gt‖2ψ∗t ≤ 2
d∑

i=1

‖g1:T,i‖2.

In addition, we consider the composite mirror descent
method to update the gradient in our case. So we arrive at

wt+1 = argmin
‖w‖≤ 1√

λ

{η〈gt,w〉+ ηϕ(w) +Bψt(w,wt)},

where Bψt
(w,wt) is the Bregman divergence associated

with a strongly convex and differentiable function ψt. In our
case, the regularization function ϕ ≡ 0. Thus, we have a
regret bound of

T∑

t=1

[Lt(wt)− Lt(w∗)] ≤
√
2D∞

d∑

i=1

‖g1:T,i‖2,

where χ = {w|‖w‖ ≤ 1√
λ
} is bounded via supw,u∈χ‖w−

u‖∞ ≤ D∞. Next, we would like to analyze the features’
dependency on the data of the gradient. Since

(gt,i)
2 ≤

[
λwt,i +

t−1∑
j=1

(1− yt〈xt − xj ,w〉)yt(xj,i − xt,i)

T−
t

]2

≤ 2(λwt,i)
2 + 2C(xj,i − xt,i)

2 = 2(λwt,i)
2 + 2C(rt,i)

2,

where C ≤ (1 + 2√
λ
)2 is a constant to bound the

scalar of the second term of the right side, and rt,i =
maxj<t |xj,i − xt,i|, we have

d∑
i=1

‖g1:T,i‖2 =

d∑
i=1

√√√√ T∑
t=1

(gt,i)2

≤
√
2

d∑
i=1

√√√√ T∑
t=1

[(λwt,i)2 + C(rt,i)2].

Finally, combining the above inequalities, we arrive at

T∑
t=1

[Lt(wt)− Lt(w∗)] ≤ 2D∞
d∑

i=1

√√√√ T∑
t=1

[(λwt,i)2 + C(rt,i)2].

From the proof above, we can conclude that Algorithm 2
should have a lower regret than non-adaptive algorithms due
to its dependence on the geometry of the underlying data
space. If the features have been normalized and sparse, the

gradient terms in the bound
d∑

i=1

‖g1:T,i‖2 should be much

smaller than
√
T , which leads to lower regret and faster con-

vergence. If the feature space is relative dense, then the con-
vergence rate will be O(1/

√
T ) for the general case as in

OPAUC and OAM methods.

Experimental Results

In this section, we evaluate the proposed AdaOAM algo-
rithm in terms of AUC performance, convergence rate, and
examine its parameter sensitivity. The framework of exper-
iments is based on the open-source library for large-scale
online learning LIBOL 1 (Hoi, Wang, and Zhao 2014).

Comparison Algorithms

We compare the proposed algorithm with other state-of-the-
art online AUC optimization algorithms. Specifically, the al-
gorithms considered in our empirical studies include:

• OAMseq: the OAM algorithm with reservoir sampling and
sequential updating method (Zhao et al. 2011);

• OAMgra: the OAM algorithm with reservoir sampling and
online gradient updating method (Zhao et al. 2011);

• OPAUC: the one-pass AUC optimization algorithm pro-
posed in (Gao et al. 2013);

• AdaOAM: the proposed adaptive gradient approach for
online AUC maximization.

Experimental Testbed and Setup

To examine the performances of the proposed AdaOAM
in comparison to existing state-of-the-art methods, we con-
duct extensive experiments on various benchmark datasets
by maintaining consistency to the previous studies on on-
line AUC maximization (Zhao et al. 2011; Gao et al. 2013).
Table 1 shows the details of 6 binary-class datasets in our

1http://libol.stevenhoi.org/
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Table 1: Details of benchmark machine learning datasets.

Dataset # instances # dimensions T−/T+

german 1,000 24 2.3333
svmguide3 1,243 22 3.1993
vehicle 846 18 3.2513
acoustic 78,823 50 3.3165
svmguide4 300 10 5.8181
w1a 2,477 300 33.4028

Table 2: Evaluation on benchmark datasets.
Algorithm german svmguide3

AUC Time(s) AUC Time(s)

OAMseq 0.7333± 0.0367 0.9610 0.7001± 0.0444 1.2152
OAMgra 0.7208± 0.0361 0.9777 0.6969± 0.0471 1.1969
OPAUC 0.7263± 0.0683 0.0201 0.7205± 0.0376 0.0242
AdaOAM 0.7719± 0.0371 0.0430 0.7358± 0.0366 0.0500

Algorithm vehicle acoustic
AUC Time(s) AUC Time(s)

OAMseq 0.7760± 0.0446 0.8202 0.8665± 0.0148 77.2125
OAMgra 0.7531± 0.0468 0.7966 0.8675± 0.0109 77.7828
OPAUC 0.7597± 0.0311 0.0138 0.8881± 0.0022 3.5908
AdaOAM 0.7968± 0.0274 0.0325 0.8949± 0.0020 5.4712

Algorithm svmguide4 w1a
AUC Time(s) AUC Time(s)

OAMseq 0.7829± 0.0519 0.2755 0.8622± 0.0479 3.6978
OAMgra 0.7619± 0.0876 0.2684 0.8741± 0.0424 3.7090
OPAUC 0.7404± 0.0779 0.0043 0.9015± 0.0338 2.1306
AdaOAM 0.8190± 0.0894 0.0103 0.9180± 0.0386 2.1241

experiments. All of these can be downloaded from LIB-
SVM 2 and UCI machine learning repository 3. Note that
several datasets (svmguide4, vehicle, acoustic) are originally
multi-class, which were converted to class-imbalanced bi-
nary datasets in our experiments.

In the experiments, the features have been normalized
fairly. Each dataset has been randomly divided into 5 folds,
in which 4 folds are for training and the remaining fold is
for testing. We also generate 4 independent 5-fold partitions
per dataset to further reduce the variations. Therefore, the re-
ported AUC value is an average of 20 runs for each dataset.
5-fold cross validation is conducted on the training sets to
decide the learning rate η ∈ 2[−10:10] and the regulariza-
tion parameter λ ∈ 2[−10:2]. For OAMgra and OAMseq ,
the buffer size is fixed at 100 as suggested in (Zhao et al.
2011). All experiments were run with MATLAB on a com-
puter workstation with 16GB memory and 3.20GHz CPU.

Evaluation on Benchmark Datasets

Table 2 summarizes the average AUC performance of the
compared algorithms over the 6 datasets. It is clear from the
results that the proposed method is superior to the other three
existing online AUC optimization algorithms considered for
comparison. In particular, AdaOAM not only achieves the
best AUC scores among all the methods, but also runs as ef-
ficiently as OPAUC, which is computationally more efficient

2http://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/
3http://www.ics.uci.edu/∼mlearn/MLRepository.html

Table 3: Details of anomaly detection datasets.

Dataset # instances # dimensions T−/T+

webspam 350,000 254 1.5397
cod-rna 271,617 8 2.0000
smartBuilding 20,000 14 85.2069
malware 71,709 122 188.7063

Table 4: Evaluation on anomaly detection datasets.

Algorithm webspam cod-rna
AUC Time(s) AUC Time(s)

OAMseq 0.9634± 0.0050 997.0423 0.9615± 0.0109 59.6678
OAMgra 0.9626± 0.0050 992.7027 0.9379± 0.0062 59.9986
OPAUC 0.9538± 0.0062 20.6425 0.9190± 0.0032 0.8085
AdaOAM 0.9647± 0.0057 20.7096 0.9672± 0.0020 2.0404

Algorithm smartBuilding malware
AUC Time(s) AUC Time(s)

OAMseq 0.5962± 0.0553 28.9850 0.9596± 0.0167 70.8177
OAMgra 0.5969± 0.0665 23.4805 0.9529± 0.0145 69.7704
OPAUC 0.5989± 0.0649 0.3039 0.9091± 0.0150 12.4623
AdaOAM 0.7001± 0.0592 0.7678 0.9669± 0.0137 14.2976

and scalable than both OAMseq and OAMgra.

Application to Online Anomaly Detection

The AdaOAM can also be potentially applied to solving on-
line anomaly detection problems. Concretely, we explore
online anomaly detection tasks in the following four appli-
cation domains:
• Webspam: We apply our algorithm to detect malicious

web pages using the “webspam” dataset.
• Bioinformatics: We apply our algorithm to solve a bioin-

formatics problem with the “Cod-RNA” dataset, which
aims to detect non-coding RNAs from some large se-
quenced genomes.

• Sensor Faults: We apply our algorithm to identify
sensor faults in buildings with the “smartBuilding”
dataset (Michaelides and Panayiotou 2009), where the
sensors monitor the concentration of the contaminant of
interest (such as CO2) in different zones in a building.

• Malware App: We apply our algorithm to detect mo-
bile malware app with a “malware” app permission
dataset, which is built from the Android Malware Genome
Project 4 (Zhou and Jiang 2012). In our experiment, we
adopt the dataset preprocessed by (Peng et al. 2012) after
data cleansing and duplication removal.
Table 3 summarizes the details of these datasets related to

the above four different domains.
Table 4 summarizes the performance for online anomaly

detection task. From Table 4, we observe that the proposed
AdaOAM algorithm also outperforms other methods. Al-
though OAMseq and OAMgra obtain comparably good re-
sults, their computational costs are very high, which are im-
practical for real-world learning tasks. Again, the AdaOAM
proves its efficiency for real-world applications.

4http://www.malgenomeproject.org/
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Figure 1: Parameter sensitivity on benchmark datasets.

Evaluation of Convergence Rate

We now examine the convergence rate for the considered
algorithms as shown in Figure 1. From the results, AdaOAM
has once again converged faster than the other three, which
is consistent to our theoretical analysis that AdaOAM can
effectively exploit second order information in achieving a
faster convergence and more robust performances.

Evaluation of Parameter Sensitivity

We now examine the parameter sensitivity of the AdaOAM
algorithm. Since the AdaOAM algorithm provides a per-
feature adaptive learning rate at each iteration, the value for
the learning rate η is less important than it is with the stan-
dard SGD. Due to the page limit, we randomly select the
results of four datasets in our study on the learning rate pa-
rameter η. The results obtained are summarized in Figure 2.

In (Gao et al. 2013), the authors claimed that OPAUC
was insensitive to the parameter settings. From Figure 2,
we find that AdaOAM is even more robust to the learning
rate settings. The updating strategy by OPAUC is based on
simple SGD, which usually requires efforts of tuning the
proper learning rate parameter. However, the adaptive gra-
dient strategy is theoretically sound for learning rate adap-
tation because it takes full advantages of historical gra-
dient information available in learning phase. Therefore,
AdaOAM is less sensitive to parameter settings. In other
words, AdaOAM has the natural effect of decreasing the

(a) german (b) svmguide3

(c) svmguide4 (d) vehicle

Figure 2: Parameter sensitivity on benchmark datasets.

learning rate with increasing iterations.

Conclusion and Future Work

In this paper, we have proposed an Adaptive Online AUC
Maximization approach, which considered the historical
component-wise gradient information for more efficient and
adaptive learning. Our proposed algorithm employs the sec-
ond order information to speed up the convergence rate of
online AUC maximization, and is less sensitive to param-
eter setting than simple SGD updating. We show that the
regret bound for online AUC maximization can be signif-
icantly reduced via the proposed algorithm. We have con-
ducted an extensive set of experiments by comparing with a
number of competing online AUC optimization algorithms
on both benchmark datasets and real-world anomaly detec-
tion datasets. The promising empirical results thus demon-
strated the effectiveness of our proposed algorithm.

For future work, we aim to improve the regret bound for
AdaOAM. In our case, the L2-norm regularization could
have been recognized as a strongly convex function to in-
crease convexity. According to (Bartlett, Hazan, and Rakhlin
2007; Shalev-Shwartz, Singer, and Srebro 2007), the regu-
larization term helps meliorate the algorithm’s actions xt to
the optimal. Therefore, the second order adaptive gradient
updating strategy may achieve O(log T/T ) rate in strongly
convex cases because gradient and projection steps are both
used in the AdaOAM algorithm.
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